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Modulated magnetic structures

There are already 160 incommensurate magnetic structures in 
the MAGNDATA database of the Bilbao Crystallographic 
Server (BCS).  Each one possesses symmetries comprising a 
magnetic superspace-group (MSSG).

Incommensurate magnetic structures are relevant to a wide 
range of materials phenomena, including skyrmions, topological 
magnetic textures and excitations, multi-ferroics, and more.
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A symmetry-breaking distortion can be decomposed into 
commensurate and/or incommensurate modulation waves, each 
with a characteristic wavevector: 𝐴𝐴 𝒓𝒓 = ∑𝑛𝑛𝐴𝐴𝑛𝑛𝑒𝑒𝑖𝑖 𝒌𝒌𝑛𝑛⋅𝒓𝒓+𝜙𝜙𝑛𝑛 ; 
position 𝒓𝒓 and wavevector 𝒌𝒌 should be interpreted here in 
unitless lattice coordinates of the parent cell (pink square).

𝒌𝒌 = (⅓, 0,0)𝒌𝒌 = (½, 0,0)
𝒌𝒌 = { ½, 0,0 , 0, ½, 0 }𝒌𝒌 = ½, ½, 0

incommensurate 𝒌𝒌 = (0.1521,0,0)

Modulation wavevector

Incommensurate means the 
wavevector 𝒌𝒌 has irrational 
components.



Incommensurate satellites
The (3 + 2)D structure of oxygen deficient LaSrCuO3.52
Haderman et al., J. Mater. Chem., 2007, 17, 2344–2350

𝒌𝒌 = ℎ, 𝑘𝑘, 𝑙𝑙,𝑚𝑚,𝑛𝑛 ⋅ 𝒂𝒂∗,𝒃𝒃∗, 𝒄𝒄∗,𝒒𝒒1,𝒒𝒒2
𝒒𝒒1 = 𝛼𝛼𝒂𝒂∗ + 𝛼𝛼𝒃𝒃∗ 𝒒𝒒2 = 𝛼𝛼𝒂𝒂∗ − 𝛼𝛼𝒃𝒃∗ 𝛼𝛼 = 0.22



Incommensurate modulations destroy 
translational periodicity in 3D space. 

Figure modified from Sander van Smaalen, pg 33, Incommensurate Crystallography (2007).

Goodbye lattice translations?

The curve drawn shows longitudinal displacement vs position.



𝒂𝒂2

𝒂𝒂4

Treat each atom in the 1D unit cell as a wave along a 
new “phase” dimension (𝒂𝒂4, vertical axis) slide.  When 
translating to a new unit cell, slide the wave phase until 
the atom is in the right place.  The translation along the 
sloped line (𝒂𝒂2) is a new (1+1)D symmetry operation.

Figure modified from Sander van Smaalen, pg 33, Incommensurate Crystallography (2007).

When we translate right by one lattice vector, the next 
atom is in the wrong place -- not a symmetry operation.

In general, we get one extra phase dimension for 
each of the 𝑑𝑑 independent modulation waves.  We 
call the result (3 + 𝑑𝑑)-dimensional superspace.

Translational periodicity (see the repeating unit) is 
recovered by adding the phase-shift dimension.

Superspace (1D example)

Presenter Notes
Presentation Notes
This one-dimensional displacively-modulated crystal clearly lacks translational symmetry along the horizontal direction.  Moving the green atoms at the origin to the right by one lattice unit (which is from one vertical grey bar to the next) does not leave them looking the same as before.  Not a symmetry.
 
However, if we think of each atom, not as point, but as a wavy line whose phase evolves along an imaginary “internal” dimension (vertical in this illustration), simply shifting the phase of the wave up a bit predicts the correct atom position.  We can do the same for each of the atoms in the figure in a systematic way.  Remarkably, adding this “phase” dimension recovers translational symmetry.  See the new repeating unit in two dimensions.  In general, we get one extra phase dimension for each of “d” independent modulation waves, and call the result (3+d)-dimensional superspace.




Superspace description

Each atom in the unit cell has local properties such as position, magnetic moment, 
occupancy, and ADPs.  In a modulated structure, each atom also possess extended 
incommensurate waves, each having a 𝒌𝒌 vector, amplitude, and phase.  

For a modulation with wavevector 𝒌𝒌, we let 𝐴𝐴𝑛𝑛 and 𝜙𝜙𝑛𝑛 be the amplitude and 
phase of the modulation of the 𝑛𝑛th atom (at location 𝒓𝒓𝑛𝑛) in the first unit cell (at 
the origin) and let 𝒕𝒕 be a lattice translation.  The modulation function at position 
𝒓𝒓𝑛𝑛 + 𝒕𝒕 is 𝐴𝐴𝑛𝑛𝑒𝑒𝑖𝑖(𝒌𝒌⋅[𝒓𝒓𝑛𝑛+𝒕𝒕]+𝜙𝜙𝑛𝑛) = 𝐴𝐴𝑛𝑛𝑒𝑒𝑖𝑖(𝒌𝒌⋅𝒓𝒓𝑛𝑛+𝜙𝜙𝑛𝑛)𝑒𝑒𝑖𝑖𝒌𝒌⋅𝒕𝒕.

A wave belonging to one atom also belongs to all translationally equivalent atoms 
in the crystal!  We only define waves for atoms in the first unit cell (at the origin).



𝑥𝑥𝑥𝑥𝑥𝑥 point-shift
augmented

matrix

{1| 0 0 0}

{2𝑥𝑥 | ½ ½ 0}

Presentation of space-group operators

The augmented-matrix form allows translations to be treated via matrix multiplication!  
Important for theoretical/computational work.  Example: space group 𝑃𝑃212121 (#19).

{2𝑦𝑦| 0 ½ ½}

{2𝑧𝑧| ½ 0 ½}

Seitz
𝑅𝑅 𝑣𝑣
0 1



Superspace symmetry operations

Space group elements permute the atoms of the structure and transform their local 
properties.  Superspace group elements do this too, but must also permute/transform 
the incommensurate waves (𝒌𝒌 vectors, amplitudes, and phases) attached to those 
atoms.  Regular space group operations cannot permute/transform the waves.

Presenter Notes
Presentation Notes
Symmetry operations can permute the propagation vectors of the star of 𝑘, and hence relate the complex amplitude vectors of the waves to one another.  They change both the direction and phase of such a complex amplitude vector.  This requires additional information in the operation matrices.




transformed atom coordinates
transformed modulation phases

External point operation 𝑅𝑅(3 × 3) and translation 𝑣𝑣(3 × 1) 
transform atom coordinates, modulation amplitudes, and physical-
property tensor components in normal 3-dimensional space.

Internal point operation 𝜖𝜖(𝑑𝑑 × 𝑑𝑑) and translation 𝛿𝛿(𝑑𝑑 × 1) act in 
the d-dimensional phase space to transform the modulation phases.

In awkward superspace settings (with rational wave-vector 
components), the external-space atom position influences the 
transformation of phases through 𝑀𝑀(𝑑𝑑 × 3).

Superspace-group matrix operations
3D atom position

atom phases

Superspace position



3D external-space position 𝑑𝑑 internal-space phases

A magnetic superspace-
group (MSSG) operation 
also has a time-reversal 
component (𝜃𝜃 = ±1). 

0 −1 0
−1 0 0
0 0 1

0 0
0 0
0 0

0
0

1/2
0 0 1
0 0 1

0 −1
−1 0

−1/4
+1/4

(0 0 0) (0 0) (1)

𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑡𝑡
𝑢𝑢

(1)

𝑘𝑘1
𝑘𝑘2

−𝑘𝑘1

−𝑘𝑘2

𝑃𝑃42𝑚𝑚𝑚𝑚(𝑎𝑎, 0, ½)00𝑞𝑞(0,𝑎𝑎, ½)0𝑠𝑠𝑠𝑠
diagonal-plane 𝑐𝑐 glide

(−𝑦𝑦,−𝑥𝑥, 𝑧𝑧 + 1/2, 𝑧𝑧 − 𝑢𝑢 + 3/4, 𝑧𝑧 − 𝑡𝑡 + 1/4)

Superspace-group matrix operations
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Example:105.2.65.9 diagonal-plane c glide.

The position of an atom in superspace includes both an external piece and an internal piece.  The external piece its is 3D position in the limit that the modulation amplitude goes to zero, while the internal piece holds the phases of each of its waves (all “d” of them).  Whereas a space-group operation has only a 3D point matrix R and a 3D translation vector v, a superspace operation includes a d-by-d point matrix epsilon, which permutes the wave vectors and their inverses, and an internal space translation or phase shift of each wave. The superspace operation transforms the external position of the atom with R and v in the usual way, and also transforms the modulation phases using M, epsilon, and delta.

The integer-matrix called “M” only arises when the wavevectors have rational components.  It causes the external atom position to influence the enacted phase shift.  It can be eliminated by choosing a “supercented” superspace-group setting – includes centering vectors that include non-zero internal-space components.

105.2.65.9
Non-lattice generators: (-y,x,z+1/2,z-u+1/4,t+1/4); (-x,y,z,z-t,u+1/2); (y,x,z+1/2,u+1/4,t+3/4) �Non-lattice operators: (x,y,z,t,u); (-x,-y,z,z-t+1/2,z-u+1/2); (-y,x,z+1/2,z-u+1/4,t+1/4); (y,-x,z+1/2,u+3/4,z-t+3/4); (-x,y,z,z-t,u+1/2); (x,-y,z,t+1/2,z-u); (-y,-x,z+1/2,z-u+3/4,z-t+1/4); (y,x,z+1/2,u+1/4,t+3/4)�*****




𝜎𝜎 =
𝑘𝑘1𝑥𝑥 ⋯ 𝑘𝑘1𝑧𝑧
⋮ ⋱ ⋮
𝑘𝑘𝑑𝑑𝑑𝑑 ⋯ 𝑘𝑘𝑑𝑑𝑑𝑑

Each row of matrix  𝜎𝜎(𝑑𝑑 × 3) contains the components of a    
3D wavevector, which may have irrational (𝜎𝜎𝑖𝑖) and rational 
(𝜎𝜎𝑟𝑟) parts.  The rows of 𝜎𝜎𝑖𝑖 must be linearly independent!

𝑅𝑅, 𝜖𝜖, and 𝑀𝑀 contain only integers; these matrices are not independent.

𝑀𝑀 = 𝜎𝜎𝑅𝑅 − 𝜖𝜖𝜖𝜖 = (𝜎𝜎𝑖𝑖𝑅𝑅 − 𝜖𝜖𝜎𝜎𝑖𝑖)  + 𝜎𝜎𝑟𝑟𝑅𝑅 − 𝜖𝜖𝜎𝜎𝑟𝑟
0

Obtain 𝝐𝝐 and M from R and 𝝈𝝈

𝜎𝜎𝑖𝑖 𝜎𝜎𝑟𝑟

= 𝛼𝛼 0 1/2
0 𝛼𝛼 1/2 = 𝛼𝛼 0 0

0 𝛼𝛼 0 + 0 0 1/2
0 0 1/2

𝜖𝜖 is determine by 𝑅𝑅 and 𝜎𝜎𝑖𝑖, and 𝑀𝑀 is determined by 𝑅𝑅, 𝜖𝜖, and 𝜎𝜎𝑟𝑟.  
When extending normal operation 𝑅𝑅, 𝑣𝑣  to superspace, only 𝛿𝛿 is 
not fixed from the start.

𝜎𝜎𝑖𝑖𝑅𝑅 = 𝜖𝜖𝜎𝜎𝑖𝑖    and     𝑀𝑀 = 𝜎𝜎𝑟𝑟𝑅𝑅 − 𝜖𝜖𝜎𝜎𝑟𝑟



= 0 0 1/2
0 0 1/2 − 0 0 −1/2

0 0 −1/2  = 0 0 1
0 0 1

= 0 0 1/2
0 0 1/2

0 −1 0
−1 0 0
0 0 1

− 0 −1
−1 0

0 0 1/2
0 0 1/2

𝑀𝑀 = 𝜎𝜎𝑟𝑟𝑅𝑅 − 𝜖𝜖𝜎𝜎𝑟𝑟

𝜎𝜎𝑖𝑖𝑅𝑅 = 𝜖𝜖𝜎𝜎𝑖𝑖

𝜖𝜖 =
𝜖𝜖11 𝜖𝜖12
𝜖𝜖21 𝜖𝜖22 = 0 −1

−1 0

Obtain 𝝐𝝐 and M parts from R and 𝜿𝜿

𝛼𝛼 0 0
0 𝛼𝛼 0

0 −1 0
−1 0 0
0 0 1

=
𝜖𝜖11 𝜖𝜖12
𝜖𝜖21 𝜖𝜖22

𝛼𝛼 0 0
0 𝛼𝛼 0

0 −𝛼𝛼 0
−𝛼𝛼 0 0 = 𝜖𝜖11𝛼𝛼 𝜖𝜖12𝛼𝛼 0

𝜖𝜖21𝛼𝛼 𝜖𝜖22𝛼𝛼 0 𝑘𝑘1
𝑘𝑘2

−𝑘𝑘1

−𝑘𝑘2



Use superspace centering to zero 𝑴𝑴

Suppose 𝜎𝜎 = 𝑘𝑘1
𝑘𝑘2

 = 𝛼𝛼 0 1/2
0 𝛼𝛼 1/2 .  Due to the rational parts, a 90° rotation 

around +z does not transform 𝑘𝑘1 and 𝑘𝑘2 into linear combinations of one another.

In other words, 𝑘𝑘2 → 𝑘𝑘1  and 𝑘𝑘1 → −𝑘𝑘2 + (0 0 1).

We can make this weirdness go away by redefining the third superspace basis vector 
as 𝑎𝑎3′ = 2𝑎𝑎3 + 𝑎𝑎4.  The new cell has a superspace centering vector 00 1

2
1
2

, which 
nicely accounts for the evolution of the wave phase along the 𝑧𝑧 direction.  In this 
new setting, 𝜎𝜎 = 𝛼𝛼 0 0

0 𝛼𝛼 0  and 𝑀𝑀 = 0, so that the phase shifts enacted by the 
four-fold rotation do not depend on atom position.  This is a much better way to live!

= 𝛼𝛼 0 1/2
0 𝛼𝛼 1/2

0 −1 0
1 0 0
0 0 1

− 0 −1
1 0

𝛼𝛼 0 1/2
0 𝛼𝛼 1/2

= 0 −𝛼𝛼 1/2
𝛼𝛼 0 1/2 − 0 −𝛼𝛼 −1/2

𝛼𝛼 0 1/2 = 0 0 1
0 0 0  

𝑀𝑀 = 𝜎𝜎𝑅𝑅 − 𝜖𝜖𝜖𝜖



𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 0 1/2 𝛾𝛾 𝑠𝑠𝑠𝑠 → 𝑀𝑀 = ±(0 1 0) for some operations.
Atom located at 𝑥𝑥𝑒𝑒 = 0.25 0.321 0.25 , so that 𝑀𝑀𝑥𝑥𝑒𝑒 ≠ 0.

Employ a supercentered cell 𝑎𝑎2′ = 2𝑎𝑎2 + 𝑎𝑎4  with centering translation 00 1
2
1
2

.

Standard setting Supercentered setting

Output from JANA 2006.  Example from M. Henriques and V. Petricek

Use superspace centering to zero 𝑴𝑴



Magnetic group construct types

A magnetic group 𝑀𝑀 can be constructed by adding time-reversal 
(indicated as a prime′) to operations of a related non-magnetic 
point group, space group, or superspace group called 𝐹𝐹.

The construction can implemented in four different ways.  
Type 1: 𝑴𝑴 = 𝑭𝑭, no primed operations (colorless).

Type 2: 𝑴𝑴 = 𝑭𝑭 + 𝑭𝑭𝟏𝟏′, primed and unprimed copies of each operation (grey).

Type 3: 𝑴𝑴 = 𝑫𝑫 + (𝑭𝑭 − 𝑫𝑫)𝟏𝟏′ for each equi-translation index-2 subgroup 𝐷𝐷 of 𝐹𝐹      
(bi-colored group with bi-colored MPG).

Type 4: 𝑴𝑴 = 𝑫𝑫 + (𝑭𝑭 − 𝑫𝑫)𝟏𝟏′ for each equi-class index-2 subgroup 𝐷𝐷 of 𝐹𝐹                
(bi-colored group with grey MPG, contains anti-translations).

Each non-magnetic SSG (𝐹𝐹) can give us many MSSGs (𝑀𝑀)!

Presenter Notes
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Because time-reversal is usually indicated with a prime symbol, I’ll use the expressions “primed” and “time-reversed” interchangeably.
There are four rather different ways to construct a magnetic group M by adding primes to the operations of a non-magnetic group F.  
First, we can choose not to prime any operations, so that M and F are essentially identical.  These are the so-called “colorless” magnetic space groups.
Second, can have both primed and unprimed copies of each operation from F.  These are the so-called “grey” magnetic space groups, which do not admit magnetic moments.
Next, one can choose an index-2 subgroup D of F, and prime the operations in the complement.  These are the so-called “bi-colored” magnetic space groups.
If F contains translations (as it will for space groups and superspace groups), we can further split the bi-colored class into two sub classes, type-3 and type-4, by choosing the subgroup D to either have the same translation subgroup or the same point group as F.  
In the latter type-4 case, half of the translations of F get primed, and are therefore no longer translations, but are instead called anti-translations.




MSSGs constructed from SSG = 16.1.9.1

ssg.m1.1  P222(0,0,g)000       2x  2y  2z  
ssg.m3.1  P2'2'2(0,0,g)000     2x' 2y' 2z  
ssg.m3.2  P22'2'(0,0,g)000     2x  2y' 2z' 
ssg.m2.1  P2221'(0,0,g)0000    2x  2y  2z  (0,0,0,0)'
ssg.m2.2  P222.1'(0,0,g)000s    2x  2y  2z  (0,0,0,1/2)'
ssg.m4.1  P222.1'_a(0,0,g)0000  2x  2y  2z  (1/2,0,0,0)'
ssg.m4.2  P222.1'_c(0,0,g)0000  2x  2y  2z  (0,0,1/2,0)'
ssg.m4.3  P222.1'_a(0,0,g)000s  2x  2y  2z  (1/2,0,0,1/2)'
ssg.m5.1  P222.1'_C(0,0,g)0000  2x  2y  2z  (1/2,1/2,0,0)'
ssg.m5.2  P222.1'_B(0,0,g)0000  2x  2y  2z  (1/2,0,1/2,0)'
ssg.m5.3  P222.1'_C(0,0,g)000s  2x  2y  2z  (1/2,1/2,0,1/2)'
ssg.m6.1  P222.1'_I(0,0,g)0000  2x  2y  2z  (1/2,1/2,1/2,0)'

Type 1:

Type 2:

Type 3:

Type 4:

For each non-magnetic SSG, test every group-forming way to add 
primes to the SSG generators, and isolate unique results as MSSGs.

Presenter Notes
Presentation Notes
To generate all of the magnetic superspace groups based on a given non-magnetic SSG, we have to test every group-forming way to add primes to the SSG generators.  And then, to clean up any duplicates, we apply an equivalence test to isolate the unique MSSGs.

This fairly simple example shows all of the MSSGs based on nonmagnetic SSG P222(0,0,g)000.
See that there is only one way to prime nothing; that’s our type-1 MSSG in blue.
We can’t assign primes only to a single two-fold rotation because that wouldn’t form a group.
If we assign primes to all three 2-fold rotations, we effectively prime everything, including the identity; that’s our type-2 MSSG in green.  The identity is indicated here as a primed zero translation.
There are three ways to assign primes to exactly two of the rotations, though two of them are equivalent, so that there are only two type-3 MSSGs in red. Omitting the prime on the first rotation is equivalent to omitting the prime on the second rotation; these groups a related by a 90 rotation around the third axis.  The third two-fold rotation is different from the others in being parallel to the modulation direction.
Each type-4 MSSG must prime half of the lattice translations of F.  The different ways of doing this can be distinguished by showing an anti-translation from the first superspace cell. The first one in black is a primed phase shift; only the internal-space component is non-zero.  This means that shifting the phase of the wave by half a period, and then flipping the whole wave with a time reversal, brings the wave back to its original form.  It’s a symmetry.




MSSGs constructed from SSG = 16.1.9.1
For each non-magnetic SSG, test every group-forming way to add 
primes to the SSG generators, and isolate unique results as MSSGs.

ssg.m1.1  P222(0,0,g)000       2x  2y  2z  
ssg.m3.1  P2'2'2(0,0,g)000     2x' 2y' 2z  
ssg.m3.2  P22'2'(0,0,g)000     2x  2y' 2z' 
ssg.m2.1  P2221'(0,0,g)0000    2x  2y  2z  (0,0,0,0)'
ssg.m2.2  P222.1'(0,0,g)000s    2x  2y  2z  (0,0,0,1/2)'
ssg.m4.1  P222.1'_a(0,0,g)0000  2x  2y  2z  (1/2,0,0,0)'
ssg.m4.2  P222.1'_c(0,0,g)0000  2x  2y  2z  (0,0,1/2,0)'
ssg.m4.3  P222.1'_a(0,0,g)000s  2x  2y  2z  (1/2,0,0,1/2)'
ssg.m5.1  P222.1'_C(0,0,g)0000  2x  2y  2z  (1/2,1/2,0,0)'
ssg.m5.2  P222.1'_B(0,0,g)0000  2x  2y  2z  (1/2,0,1/2,0)'
ssg.m5.3  P222.1'_C(0,0,g)000s  2x  2y  2z  (1/2,1/2,0,1/2)'
ssg.m6.1  P222.1'_I(0,0,g)0000  2x  2y  2z  (1/2,1/2,1/2,0)'

Type 1:

Type 2:

Type 3:

Type 4:



(𝟑𝟑 + 𝒅𝒅)D SSGs for 𝑑𝑑 = 1,2,3
Acta Cryst. A67, 45-55 (2011).

Acta Cryst. A69, 75-90 (2013).

Modulations 𝑑𝑑 = 1 𝑑𝑑 = 2 𝑑𝑑 = 3
SSG count 775 3338 12584

Presenter Notes
Presentation Notes
Using this approach, we enumerated and tabulated the non-magnetic superspace group with d=1, 2, and 3 internal-space dimensions.  The 775 single-modulation SSGs were already known at the time.  But the results were novel for higher dimensions.  We then uniquely identified all of the superspace-group symmetries of every known structure with more than one modulation vector.
straightforward.



(𝟑𝟑 + 𝒅𝒅)D MSSGs for 𝑑𝑑 = 1,2,3

Presenter Notes
Presentation Notes

Most recently, we have expanded this effort to include magnetic superspace groups.  The equivalence test was trivial to extend; we merely added the requirement that the time-reversal components of corresponding elements match up.



MPG MSG (d=0) MSSG (d=1) MSSG (d=2) MSSG (d=3)
Type 1 32 230 775 3338 12584
Type 2 32 230 775 3338 12584
Type 3 58 674 3100 15218 60799
Type 4 -- 517 4653 31862 176101
Total 122 1651 9303 53756 262068

MSSG enumeration/tabulation

Why bother when there are so many?  After detecting the MSSG elements of an 
incommensurate structure (already a challenge) in an arbitrary setting, it’s very 
difficult to subsequently compare its symmetry to that of other known structures.  
One would need to run an equivalence test on every structure of interest, which is 
not practical.  With an exhaustive table, we need only compare to reference setting 
of each tabulated MSSG with similar properties (e.g. Bravais class, MBSG).



𝑃𝑃42′ 𝑚𝑚𝑚𝑚𝑚 𝑎𝑎, 0, ½ 00𝑞𝑞 0,𝛼𝛼, ½ 0𝑠𝑠𝑠𝑠

MSSG symbols and numbers

Magnetic basic space 
group (MBSG)

propagation vectors 
(in standard setting)

MSSG =  #105.2.65.9.m214.1     𝑃𝑃42′ 𝑚𝑚𝑐𝑐′(𝑎𝑎, 0, ½)00𝑞𝑞(0,𝑎𝑎, ½)0𝑠𝑠𝑠𝑠
MBSG = #105.214 𝑃𝑃42′ 𝑚𝑚𝑐𝑐′
FSSG =   #105.2.65.9 𝑃𝑃42𝑚𝑚𝑚𝑚(𝑎𝑎, 0, ½)00𝑞𝑞(0,𝑎𝑎, ½)0𝑠𝑠𝑠𝑠

1st and only MSSG with this FSSG and MBSG

𝛿𝛿 components (phase shifts) for 
each 𝒌𝒌 and each PG generator in 
the supercentered setting

Bravais class = 2.65  𝑃𝑃𝑃/𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎, 0, ½)0000(0,𝛼𝛼, ½)0000

𝑠𝑠 1/2
𝑡𝑡, ̅𝑡𝑡 ±1/3
𝑞𝑞, �𝑞𝑞 ±1/4
ℎ, �ℎ ±1/6

Presenter Notes
Presentation Notes
The form of our MSSG symbols were inspired by published examples from Manuel Perez-Mato and Vaclav Petricek.  They are only a slight modification of the non-magnetic SSG symbols.  The wave vectors and the internal-space phase shifts of the group generators are still present, just as before.  But for an MSSG, the basic space group at the front is replaced by the magnetic basic space group, as shown here.

An MSSG number has six different parts.  The first four parts specify the non-magnetic family SSG from which the MSSG was constructed.  This example is the 9th SSG with basic space group #105 or P4_2mc, and Bravais class #2.65.  The m214 clarifies that the basic magnetic space group is #105.214, or P4_2’mc’.  And the very important sixth component distinguishes MSSGs with the same values of the first five parts.  There is only one such MSSG in this example, so that the last part can only be 1.

***** Other
Magnetic superspace group: 105.2.65.9.m214.1  P4_2'mc'(a,0,1/2)00q(0,a,1/2)0sq�Non-lattice generations: (-y,x,z+1/2,z-u+1/4,t+1/4)'; (-x,y,z,z-t,u+1/2); (y,x,z+1/2,u+1/4,t+3/4)' �Non-lattice operations: (x,y,z,t,u); (-x,-y,z,z-t+1/2,z-u+1/2); (-y,x,z+1/2,z-u+1/4,t+1/4)'; (y,-x,z+1/2,u+3/4,z-t+3/4)'; (-x,y,z,z-t,u+1/2); (x,-y,z,t+1/2,z-u); (-y,-x,z+1/2,z-u+3/4,z-t+1/4)'; (y,x,z+1/2,u+1/4,t+3/4)'�*****




Single-k ferrimagnetic double-conical structure; Dy and Mn 
have incommensurate (0,0, 𝛾𝛾) in-plane spirals around 
opposing commensurate (0,0,1) FM moments.

DyMn6Ge6 (#1.1.10)
𝑃𝑃62′2′ 00𝛾𝛾 ℎ00 with 𝛾𝛾 = 0.165

177.1.24.2.m153.1
𝑎𝑎 = 5.20810, 𝑐𝑐 = 8.15220 

1 x1,x2,x3,x4,+1
2 x1-x2,x1,x3,x4+1/6,+1
3 -x2,x1-x2,x3,x4+1/3,+1
4 -x1,-x2,x3,x4+1/2,+1
5 -x1+x2,-x1,x3,x4+2/3,+1
6 x2,-x1+x2,x3,x4+5/6,+1

7 x1-x2,-x2,-x3,-x4+1/3,-1
8 x1,x1-x2,-x3,-x4+1/2,-1
9 x2,x1,-x3,-x4+2/3,-1
10 -x1+x2,x2,-x3,-x4+5/6,-1
11 -x1,-x1+x2,-x3,-x4,-1
12 -x2,-x1,-x3,-x4+1/6,-1

Type-3 MSSG with 𝐹𝐹 = 𝑃𝑃𝑃𝑃𝑃 00𝛾𝛾 ℎ00 and 𝐷𝐷 = 𝑃𝑃6 00𝛾𝛾 ℎ

DyMn6Ge6 double cone

http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.10





atom         position and moment      symmform
Dy1 1a  [ 0.00000  0.00000  0.00000]  0,0,0  
        [ 0.00000  0.00000 -3.93200]  0,0,Mz 
Mn1 6i  [ 0.50000  0.00000  0.74900]  0,0,Dz 
        [ 0.00000  0.00000  1.14900]  0,0,Mz 
Ge1 2c  [ 0.33330  0.66667  0.00000]  0,0,0  
Ge2 2d  [ 0.33330  0.66667  0.50000]  0,0,0  
Ge3 2e  [ 0.00000  0.00000  0.65530]  0,0,Dz 

param      A_cos     A_sin        symmform
Dy1_Mx  [ 7.15400   0.00000]  Mxc1      0
Dy1_My  [ 3.57700   6.19555] (Mxc1)/2   Mxc1*sqrt(3/4)
Dy1_Mz  [ 0.00000   0.00000]  0         0
Mn1_Mx  [-2.04846   0.20586]  Mxc1      Mxs1
Mn1_My  [-1.20287  -1.67142]  Myc1      Mys1
Mn1_Mz  [ 0.00000   0.00000]  0         0

DyMn6Ge6     177.1.24.2.m153.1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃(00𝛾𝛾)ℎ00 with 𝛾𝛾 = 0.165

DyMn6Ge6 double cone



Dysprosium:
|Mx| = 7.15400 𝜇𝜇𝐵𝐵
|My| = sqrt(3.57700^2 +6.19555^2) = 7.15400 𝜇𝜇𝐵𝐵
𝜙𝜙(Mx) = arctan(0/7.15400) = 0º
𝜙𝜙(My) = arctan(+6.19555/+3.57700) = +60º
𝜙𝜙(My)-𝜙𝜙(Mx) = +60º

Manganese:
|Mx| = sqrt(2.04846^2 + 0.20586^2) = 2.05878 𝜇𝜇𝐵𝐵
|My| = sqrt(1.20287^2 + 1.67142^2) = 2.05878 𝜇𝜇𝐵𝐵
𝜙𝜙(Mx): arctan(+0.20586/-2.04846) = +174.26133º
𝜙𝜙(My): arctan(-1.67142/-1.20287) = +234.26133º
𝜙𝜙(My)-𝜙𝜙(Mx) = +60º

Circular Dy spiral runs nearly 180º ahead of circular Mn spiral.

DyMn6Ge6 double cone



1  x1,x2,x3,x4,+1
2 -x1,-x2,x3+1/2,-x4,+1
3  x1+1/2,-x2+1/2,x3+1/2,-x4,+1
4 -x1+1/2,x2+1/2,x3,x4,+1

TbMnO3 (#1.1.7)   𝑃𝑃𝑃𝑃𝑃𝑃21. 1′ 0𝛽𝛽𝛽 000𝑠𝑠   33.1.9.5.m145.2

5  x1,x2,x3,x4+1/2,-1
6 -x1,-x2,x3+1/2,-x4+1/2,-1
7 x1+1/2,-x2+1/2,x3+1/2,-x4+1/2,-1
8 -x1+1/2,x2+1/2,x3,x4+1/2,-1

Type-4 MSSG with anti-
translation (0,0,0, ½)′

Multi-ferroic TbMnO3

Presenter Notes
Presentation Notes
Here’s the Bilbao Crystallographic Server visualization of terbium manganite.  Below 28 K, two incommensurate magnetic waves with the same k vector, one transverse and one longitudinal, superpose 90 degrees out of phase to form a cycloid structure. Its related properties generated quite a controversy 10 to 15 years ago because the symmetry wasn’t properly understood.  Crystallographic infrastructure that support magnetic superspace groups is really quite new.  It is now clear that the two waves, when acting together, break inversion symmetry and couple to a secondary ferroelectric moment. The resulting magnetic superspace group, shown here, has a grey basic magnetic space group, which forbids a ferromagnetic moment, but has a polar basic space group, which does admit a ferroelectric moment. TbMnO3 is one example of what has since become an important class of multiferroic materials. 

***** Other
PRL95.087206 can be described by coupling commensurate mSM2 and mSM3 at [0,1/4,0].

At low temperatures, the incommensurate magnetic distortions occur at the [0,beta,0] or sigma point of space group Pbnm, which is also a cubic 110 direction.  The wave vector points along the axis of rotation associated with the cubic R4+ octahedral rotations in the distorted cubic perovskite.  The ferroelectric irreps of Pbnm are GM2- (x axis), GM3- (y axis) and GM4- (z axis), each of which have a single (a) OPD. 

In the LTI phase below 28K (actually at 15 K), however, the best fit to the magnetic neutron diffraction data was provided by coupling mSM2 and mSM3.  The contribution of mSM3 was just as before except that the mSM3[Mn:b]Ag_1 mode amplitude got significantly larger.  The contribution of SM2 included a significant Mn z-axis (i.e. mSM2[Mn:b]Ag_2) amplitude and a significant x-axis Tb amplitude (mSM2[Tb:c]A''_3 and mSM2[Tb:c]A''_4). 


http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.7


1  x1,x2,x3,x4,+1
2 -x1,-x2,x3+1/2,-x4,+1
3  x1+1/2,-x2+1/2,x3+1/2,-x4,+1
4 -x1+1/2,x2+1/2,x3,x4,+1

TbMnO3 (#1.1.7)   𝑃𝑃𝑃𝑃𝑃𝑃21. 1′ 0𝛽𝛽𝛽 000𝑠𝑠   33.1.9.5.m145.2

5  x1,x2,x3,x4+1/2,-1
6 -x1,-x2,x3+1/2,-x4+1/2,-1
7 x1+1/2,-x2+1/2,x3+1/2,-x4+1/2,-1
8 -x1+1/2,x2+1/2,x3,x4+1/2,-1

Mn_Mx   0.00000  0.00000  Mxc1 Mxs1
Mn_My   0.00000 -2.82843  Myc1 Mys1
Mn_Mz  -2.82843  0.00000  Mzc1 Mzs1

No MSSG symmetry constraints on the 
modulation amplitudes, which are instead 
associated with relevant multi-dimensional 
irreps/OPDs: 𝑚𝑚Σ3 𝑎𝑎, 0 + 𝑚𝑚Σ2(𝑏𝑏, 0).

Type-4 MSSG with anti-
translation (0,0,0, ½)′

Multi-ferroic TbMnO3

http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.7


Multi-ferroic TbMnO3

Transverse and longitudinal modulations are superposed 90° out of 
phase, forming an incommensurate single-k magnetic cycloid. 

Acting together, these two magnetic modulations break inversion 
symmetry and couple to a secondary ferroelectric moment, making 
the material an important multiferroic.

TbMnO3 (#1.1.7)   𝑃𝑃𝑃𝑃𝑃𝑃21. 1′ 0𝛽𝛽𝛽 000𝑠𝑠   33.1.9.5.m145.2

http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.7





Magnetic skyrmion lattice

Image from Mühlbauer et al., Science 323, 915-919 (2009).

Skyrmion lattice.  Three phase-locked transverse waves in the plane yield an 
incommensurate 2D lattice of magnetic vortices on a triangular arrangement of 
magnetic atom.  Their topological stability makes skyrmions interesting for 
information storage, magneto-electronic devices, and quantum computing.
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Presenter Notes
Presentation Notes
Three transverse magnetic waves, separated by 120 degrees in the plane, but all having the same phase, yield a incommensurate 2D lattice of magnetic whirlpools on a triangular arrangement of magnetic atoms.  We call these magnetic “skyrmions” and refer to this pattern as a skyrmion lattice.  Their topological stability make skyrmions interesting for information storage, magneto-electronic devices, and quantum computing.

Because the three wavevectors add to zero, one depends on the other two, two leaving only independent wavevectors and superspace dimensions. k1 and k2 are shown here in the MSSG symbol.  The basic magnetic space group of the skyrmion lattice, indicated here at P62’2’, can admit a secondary ferromagnetic moment normal to the plane, as evidenced by the background of mostly-upward spins (indicated in yellow in the figure).  Due to the MSSG symmetry, this entire spin pattern has only two adjustable degrees of freedom (not including the modulation period), both of which are set by the size of the atomic magnetic moment.

mLD3 + mLD4 + secondary ferromagnetic mGM2+�P-P (a,0;a,0;a,0|b,0;b,0;b,0) 177.2.83.6.m153.1 P62'2'(a,a,0)000(-2a,a,0)000
s=1, i=4, k-active= (q,q,0),(-q,2q,0),(-2q,q,0)

mLD3�P (a,0;a,0;a,0) 191.2.83.7.m235.1 P6/m'mm(a,a,0)0000(-2a,a,0)0000
s=1, i=2, k-active= (q,q,0),(-q,2q,0),(-2q,q,0)



𝑘𝑘1 = 𝛼𝛼,𝛼𝛼, 0 ,  𝑘𝑘2= −2𝛼𝛼,𝛼𝛼, 0 ,  𝑘𝑘3= 𝛼𝛼,−2𝛼𝛼, 0  →  𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 = 0

2D skyrmion lattice

Three incommensurate transverse 
waves, locked in phase, form this 
remarkable 2D magnetic skyrmion-
lattice.  The in-plane component of 
the pattern has only one adjustable 
magnetic degree of freedom.  The 
out-of-plane component is not 
shown.

One k vector depends on the other 
two, so that there are only two 
independent superspace dimensions.
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MSSG: 177.2.83.6.m153.1   𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎,𝑎𝑎, 0)000(−2𝑎𝑎,𝑎𝑎, 0)000
Bravais class: 2.83  𝑃𝑃𝑃/𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎,𝑎𝑎, 0)(−2𝑎𝑎,𝑎𝑎, 0)

2D skyrmion lattice – magnetic superspace group

(3+2)D type-3 MSSG.
Representative non-lattice operations: 

(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡,𝑢𝑢)
(−𝑥𝑥,−𝑦𝑦, 𝑧𝑧,−𝑡𝑡,−𝑢𝑢)

(−𝑦𝑦, 𝑥𝑥 − 𝑦𝑦, 𝑧𝑧,−𝑡𝑡 − 𝑢𝑢, 𝑡𝑡)
(−𝑥𝑥 + 𝑦𝑦,−𝑥𝑥, 𝑧𝑧,𝑢𝑢,−𝑡𝑡 − 𝑢𝑢)

(𝑥𝑥 − 𝑦𝑦, 𝑥𝑥, 𝑧𝑧,−𝑢𝑢, 𝑡𝑡 + 𝑢𝑢)
(𝑦𝑦,−𝑥𝑥 + 𝑦𝑦, 𝑧𝑧, 𝑡𝑡 + 𝑢𝑢,−𝑡𝑡)

(𝑥𝑥 − 𝑦𝑦,−𝑦𝑦,−𝑧𝑧,−𝑡𝑡 − 𝑢𝑢,𝑢𝑢)′
(𝑦𝑦, 𝑥𝑥,−𝑧𝑧, 𝑡𝑡,−𝑡𝑡 − 𝑢𝑢)′

(−𝑥𝑥,−𝑥𝑥 + 𝑦𝑦,−𝑧𝑧,𝑢𝑢, 𝑡𝑡)′
(𝑥𝑥, 𝑥𝑥 − 𝑦𝑦,−𝑧𝑧,−𝑢𝑢,−𝑡𝑡)′

(−𝑥𝑥 + 𝑦𝑦,𝑦𝑦,−𝑧𝑧, 𝑡𝑡 + 𝑢𝑢,−𝑢𝑢)′
(−𝑦𝑦,−𝑥𝑥,−𝑧𝑧,−𝑡𝑡, 𝑡𝑡 + 𝑢𝑢)′
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𝒎𝒎𝟏𝟏

𝒂𝒂

𝒃𝒃

𝒂𝒂∗
𝒃𝒃∗

𝑚𝑚1(𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑚𝑚,−𝑚𝑚, 0 ,  𝑚𝑚2(𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑚𝑚,2𝑚𝑚, 0 ,    𝑚𝑚3(𝑠𝑠𝑠𝑠𝑠𝑠) = −2𝑚𝑚,−𝑚𝑚, 0
Symmetry constraints on the modulations leave only one degree of freedom (𝑚𝑚).



Other interesting multi-k cases

CeAlGe (#2.1.1)
𝐼𝐼41𝑚𝑚𝑚𝑚.1′(𝛼𝛼, 0,0)000𝑠𝑠(0,𝛼𝛼, 0)0𝑠𝑠𝑠𝑠𝑠 

Two orthogonal incommensurate cycloids 
from same 𝒌𝒌-star superpose to yield an 
unusual topological spin texture.

MnGe (#3.1.1)
𝑃𝑃213.1′(𝛼𝛼, 0,0)00𝑠𝑠(0,𝛼𝛼, 0)00𝑠𝑠(0,0,𝛼𝛼)00𝑠𝑠 
Three orthogonal incommensurate 
modulation from same 𝒌𝒌-star superpose to 
yield a fully 3D topological spin texture.

http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=2.1.1
https://www.cryst.ehu.es/magndata/index.php?this_label=3.1.1








Summary

• Incommensurate modulations break 3D translational periodicity; internal 
superspace (phase) dimensions restore periodicity, but in 3+d dimensions.

• One superspace dimension independent for 𝒌𝒌 vector (irrational part).

• Every active 𝒌𝒌 vector is an integer linear combination of the independent ones.

• Modulations can be magnetic, displacive, occupational, or rotational.

• Superspace symmetry operations must transform both the local atom properties 
(position, occupancy, ADPs) and their waves (k-vector, vector amplitude, phase).

• MSSGs are constructed from SSGs by adding time reversal to some operations.  
The four basic constructs are like those of commensurate MSGs.  Most structures 
with type-4 MSSGs have an internal-space anti-translation, e.g. (000½)′.

• There are so many (3+d)D MSSGs; always provide reference transformation!

• Magnetic modulations impact material properties.

• Multi-k structures from a single k-star have especially interesting spin textures.



• ISOSPACEGROUP and ISO(3+D) list generators, centering vectors, and 
non-lattice operations for each of 325,127 MSSGs in a standard reference 
setting, along with those of a supercentered setting where appropriate.  
Released for testing in May 2019 and corrected/updated June 2020 
(https://iso.byu.edu).

• Since Jul 2020, FINDSYM and ISOCIF can detect and enforce the 
SSG/MSSG symmetry (or pseudosymmetry within tolerance) of an 
incommensurate structure, and ISOCIF can transforms the symmetrized 
result into any desired SSG/MSSG setting.

• ISODISTORT finds incommensurate isotropy subgroups, uniquely identifies 
the SSG/MSSG and the transformation to a reference setting, projects the 
modulation waves, and symmetry-restricts the modulation amplitudes.

• The reliable identification and comparison of virtually any two 
incommensurate magnetic structures is accomplished by combining an 
exhaustive MSSG tabulation, a MSSG setting-transformation tool, a robust 
MSSG detection routine, and a very fast MSSG equivalence test.

Tools available

Presenter Notes
Presentation Notes
Read the slide.

https://iso.byu.edu/
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