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The ISOTROPY Software Suite supports the use of representational 
analysis to parameterize the symmetry-breaking distortions of a 
crystal, such as might arise in a phase transition.

The undistorted structure is called the parent, while the distorted 
structure is called the child.  The space group of the child is a 
subgroup of the space group of the parent.

Each distortion parameter (symmetry mode) is a global pattern of 
structural changes (e.g. atomic displacements, site occupancies, 
magnetic moments, rigid-unit rotations, or lattice strains).

Each symmetry mode active in the child belongs to an irreducible 
representation of the parent space group.

Parameterization of a distorted crystal
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Representational analysis: child vs parent

Define child by how it differs from parent.



Symmetry groups: crystals etc.
The symmetries of any system form a group!

Presenter Notes
Presentation Notes
Image/animation sources:
https://en.wikipedia.org/wiki/Wilkinson_Microwave_Anisotropy_Probe
http://www.virology.wisc.edu/virusworld/PS10/sv40_virus-vmd.jpg
https://www.nrao.edu/pr/2013/localarm/







Symmetry groups
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Closure:
Identity:
Inverses:
Associativity:

a b = c
a 1 = a

a a −1 = 1
(a b) c = a (b c)

Point group: 222(D2)

2x 2y = 2z
2z 1 = 2z

2z (2z )−1 = 1
(2x 2y) 2z = 2x (2y 2z)

2𝑧𝑧

2𝑥𝑥
2𝑦𝑦

Twistane (C10H16)

A set with a binary operation (e.g. addition or multiplication)



Group representations
Point group: 222

1 2𝑥𝑥 2𝑦𝑦 2𝑧𝑧
1 1 2𝑥𝑥 2𝑦𝑦 2𝑧𝑧
2𝑥𝑥 2𝑥𝑥 1 2𝑧𝑧 2𝑦𝑦
2𝑦𝑦 2𝑦𝑦 2𝑧𝑧 1 2𝑥𝑥
2𝑧𝑧 2𝑧𝑧 2𝑦𝑦 2𝑥𝑥 1

Representations map group elements onto 
matrices obeying the same multiplication table.
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𝑅𝑅𝑅:  1 → 1  2𝑥𝑥 → �1  2𝑦𝑦 → 1  2𝑧𝑧 → �1  

𝑅𝑅𝑅:  1 → 1  2𝑥𝑥 → 1  2𝑦𝑦 → �1  2𝑧𝑧 → �1  

𝑅𝑅𝑅:  1 → 1 0
0 1  2𝑥𝑥 →

�1 0
0 1

 2𝑦𝑦 →
1 0
0 �1  2𝑧𝑧 →

�1 0
0 �1

𝑅𝑅𝑅 = 𝑅𝑅𝑅⊕ 𝑅𝑅𝑅 = 𝑅𝑅1 0
0 𝑅𝑅𝑅

Reducible representation:

Irreducible representations (irreps) can’t be separated into smaller pieces!

Irreps recipes for symmetry breaking!

michaeldepippo.com

Irreducible representations (irreps)



Irrep/OPD recipe for symmetry-breaking

𝑔𝑔1        𝑔𝑔2          𝑔𝑔3          𝑔𝑔4          𝑔𝑔5         𝑔𝑔6          𝑔𝑔7          𝑔𝑔8 

Find the group elements whose matrices leave some vector invariant.

The vector used is called the order parameter direction or OPD.
The resulting symmetry is called an isotropy subgroup of the parent.

𝑎𝑎
0 ⇒ {𝑔𝑔1, 𝑔𝑔2}

𝑎𝑎
𝑎𝑎 ⇒ {𝑔𝑔1, 𝑔𝑔5} 𝑎𝑎

𝑏𝑏 ⇒ {𝑔𝑔1}

𝐺𝐺 = 1 0
0 1  1 0

0 �1  �1 0
0 1

 �1 0
0 �1

 0 1
1 0  0 �1

1 0
 0 1
�1 0  0 �1

�1 0

Example: Γ5 irrep of space group 𝑃𝑃𝑃𝑃𝑃𝑃𝑃

1         𝑚𝑚𝑦𝑦        𝑚𝑚𝑥𝑥         2𝑧𝑧        𝑚𝑚𝑥̅𝑥𝑧𝑧      +4𝑧𝑧       −4𝑧𝑧      𝑚𝑚𝑥𝑥𝑧𝑧

𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶 𝑃𝑃𝑃
{1,𝑚𝑚𝑦𝑦} {1,𝑚𝑚𝑥̅𝑥𝑧𝑧} {1}

Presenter Notes
Presentation Notes
For this irrep, every lattice translation maps to the identity matrix.
An isotropy subgroup consists of those parent symmetry elements that leave the OPD invariant.
See that different OPDs of the same irrep lead to different isotropy subgroups.
The isotropy subgroup belonging to the general OPD is called the kernel, whereas the special OPDs are called epikernels.
There are other ways to break the parent symmetry.  But they involve other irreps of P4mm.



Irrep/OPD recipe for symmetry-breaking

𝑔𝑔1        𝑔𝑔2          𝑔𝑔3          𝑔𝑔4          𝑔𝑔5         𝑔𝑔6          𝑔𝑔7          𝑔𝑔8 

Symmetry element leaves child invariant iff irrep matrix leaves OPD invariant.

𝑎𝑎
0 ⇒ 𝑔𝑔1, 𝑔𝑔2 = 1,𝑚𝑚𝑦𝑦 → 𝑃𝑃𝑃𝑃

𝐺𝐺 = 1 0
0 1  1 0

0 �1  �1 0
0 1

 �1 0
0 �1

 0 1
1 0  0 �1

1 0
 0 1
�1 0  0 �1

�1 0

Γ5 𝑎𝑎, 0  of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃  induces vertical shear strain
1         𝑚𝑚𝑦𝑦        𝑚𝑚𝑥𝑥         2𝑧𝑧        𝑚𝑚𝑥̅𝑥𝑧𝑧      +4𝑧𝑧       −4𝑧𝑧      𝑚𝑚𝑥𝑥𝑧𝑧

Presenter Notes
Presentation Notes
Irrep matrices and OPDs are abstract.  Symmetry operation and physical order parameters are concrete – they exist within the “problem” space we are working with.  But there is a deep connection between the abstract and the concrete.  Every concrete symmetry operation is mapped to an abstract irrep matrix and every concrete order parameter is mapped to an abstract OPD.  A concrete symmetry operation leaves a concrete order parameter of our system invariant if and only if the corresponding abstract irrep matrix leaves the corresponding abstract OPD invariant.



Magnetic irreps have twice as many matrices as corresponding non-magnetic 
irreps – primed and unprimed versions of every non-magnetic operation.

Let pure time reversal operation be the negative identity.  Adding a prime to an 
operation just multiplies its matrix by −1.  This may not add unique matrices 
to the image.  But it changes the isotropy subgroups.

Magnetic representations
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[0,¼,0]m∆2 irrep of paramagnetic space-group 𝑃𝑃𝑃𝑃𝑃.1′ 



𝟏𝟏 𝟐𝟐𝒙𝒙 𝟐𝟐𝒚𝒚 𝟐𝟐𝒛𝒛
𝚪𝚪𝟏𝟏 1 1 1 1
𝚪𝚪𝟐𝟐 1 −1 −1 1
𝚪𝚪𝟑𝟑 1 1 −1 −1
𝚪𝚪𝟒𝟒 1 −1 1 −1

z

y

x

1

+−

z

y

x

2𝑥𝑥

z

y

x

2𝑦𝑦

z

y

x

2𝑧𝑧

Irrep basis functions: the 𝒑𝒑𝒚𝒚 orbital

Under the symmetry 
operations of the group, a 
𝑝𝑝𝑦𝑦 orbital transforms the 
same way as which irrep?

𝒑𝒑𝒛𝒛
𝒑𝒑𝒙𝒙
𝒑𝒑𝒚𝒚

Parent symmetry = 222

Presenter Notes
Presentation Notes
What does it mean for a distortion to “belong” to an irrep?  Let the p_y orbital be the parent object.  It has 222 symmetry (plus other symmetries that we will ignore here).  We distort it by coloring one side black and other side white.




Not an irrep basis function.

𝟏𝟏 𝟐𝟐𝒙𝒙 𝟐𝟐𝒚𝒚 𝟐𝟐𝒛𝒛
𝚪𝚪𝟏𝟏 1 1 1 1
𝚪𝚪𝟐𝟐 1 −1 −1 1
𝚪𝚪𝟑𝟑 1 1 −1 −1
𝚪𝚪𝟒𝟒 1 −1 1 −1
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Irrep basis functions: the 𝒅𝒅𝒚𝒚𝒚𝒚 orbital

Under the symmetry 
operations of the group, a 
𝑑𝑑𝑦𝑦𝑦𝑦 orbital transforms the 
same way as which irrep?

𝒅𝒅𝒙𝒙𝟐𝟐−𝒚𝒚𝟐𝟐, 𝒅𝒅𝒛𝒛𝟐𝟐

𝒑𝒑𝒛𝒛, 𝒅𝒅𝒙𝒙𝒙𝒙
𝒑𝒑𝒙𝒙, 𝒅𝒅𝒚𝒚𝒚𝒚
𝒑𝒑𝒚𝒚, 𝒅𝒅𝒙𝒙𝒙𝒙

Parent symmetry = 222



Wonderful orthogonality theorem (WOT)

Beautiful Computable

𝟏𝟏 𝟐𝟐𝒙𝒙 𝟐𝟐𝒚𝒚 𝟐𝟐𝒛𝒛
𝚪𝚪𝟏𝟏 1 1 1 1
𝚪𝚪𝟐𝟐 1 −1 −1 1
𝚪𝚪𝟑𝟑 1 1 −1 −1
𝚪𝚪𝟒𝟒 1 −1 1 −1

Irreps provide a symmetry-based coordinate system 
(parameter set) for describing any deviation from symmetry.

Irreps enjoy special orthogonality and completeness properties.

Irreps

Presenter Notes
Presentation Notes
http://www-history.mcs.st-andrews.ac.uk/Biographies/Frobenius.html
His student, Issai Schur, provide the theorms of greatest relevance today, on the orthogonality of group representations and characters.

Rows (single irrep, all classes) and columns (single class, all irreps) of the character table are orthogonal.
Elements of group representation matrices are orthogonal (different elements or irreps, summed over all group elements).

John Hasbrouck Van Vleck (March 13, 1899 – October 27, 1980) was an American physicist and mathematician, co-awarded the 1977 Nobel Prize in Physics, for his contributions to the understanding of the behavior of electrons in magnetic solids.  He coined the term “Wonderful Orthogonality Theorem”.

In the late 1800s and early 1900s, the application of symmetry groups transformed theoretical physics and chemistry.  This includes the work of Sophus Lie, Henri Poncaire, Hendrick Lorentz, Albert Einstein, Hermann Weyl, Eugene Wigner, Emmy Noether, and many others, such as Pierre Curie, Murray Gell-Mann, Paul Dirac.  Symmetries of dynamical equations: relativity; quantum mechanics; field theory and elementary particles; study of atomic, molecular and multi-body systems.






Distortion space

The collection of all structural variables define a vector 
space, which we can refer to as distortion space.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 1′ 𝑃𝑃𝑃

parent 2 × 2 supercell

4 unique atoms in supercell  →  8 structural parameters 

𝑚𝑚1𝑥𝑥
𝑚𝑚1𝑦𝑦
𝑚𝑚2𝑥𝑥
𝑚𝑚2𝑦𝑦
𝑚𝑚3𝑥𝑥
𝑚𝑚3𝑦𝑦
𝑚𝑚4𝑥𝑥
𝑚𝑚4𝑦𝑦



Symmetry modes: a new parameter set

Symmetry modes yield an orthogonal basis for distortion space.

𝑃𝑃𝑃 𝑃𝑃𝑃.1𝑎𝑎′

𝑃𝑃𝑃𝑃𝑃𝑃𝑃.1𝐶𝐶′
𝑃𝑃𝑃𝑃𝑃𝑃𝑃.1𝐶𝐶′

𝑚𝑚Γ5(𝑎𝑎, 𝑏𝑏) 𝑚𝑚𝑀𝑀5(𝑎𝑎, 𝑏𝑏)

𝑚𝑚𝑋𝑋3(𝑎𝑎, 𝑏𝑏)
𝑚𝑚𝑋𝑋4(𝑎𝑎, 𝑏𝑏)

Presenter Notes
Presentation Notes
Not as simple as traditional xyz’s.  One mode affects many atoms.  One atom affected by many modes (e.g. polyhedral rotations).  
Symmetry modes are an orthogonal basis in distortion space.
Transformation between old & new is linear (conserves total number of structural parameters).




Symmetry modes: a new parameter set

Symmetry modes yield an orthogonal basis for distortion space.

𝑃𝑃𝑃 𝑃𝑃𝑃.1𝑎𝑎′

𝑃𝑃𝑃𝑃𝑃𝑃𝑃.1𝐶𝐶′
𝑃𝑃𝑃𝑃𝑃𝑃𝑃.1𝐶𝐶′

𝑚𝑚Γ5(𝑎𝑎, 𝑏𝑏) 𝑚𝑚𝑀𝑀5(𝑎𝑎, 𝑏𝑏)

𝑚𝑚𝑋𝑋3(𝑎𝑎, 𝑏𝑏)
𝑚𝑚𝑋𝑋4(𝑎𝑎, 𝑏𝑏)

Presenter Notes
Presentation Notes
Not as simple as traditional xyz’s.  One mode affects many atoms.  One atom affected by many modes (e.g. polyhedral rotations).  
Symmetry modes are an orthogonal basis in distortion space.
Transformation between old & new is linear (DOF conservation).




A symmetry-breaking crystal distortion can be decomposed into 
modulation waves, each with a characteristic wavevector.  Some 
modulations have a single 𝑘𝑘 vector while other are multi-𝑘𝑘.

𝒌𝒌 = (⅓, 0,0)𝒌𝒌 = (½, 0,0)
𝒌𝒌 = { ½, 0,0 , 0, ½, 0 }𝒌𝒌 = ½, ½, 0

incommensurate 𝒌𝒌 = (0.1521,0,0)

Modulation wavevector

Incommensurate means the 
wavevector 𝒌𝒌 has irrational 
components.



Symmetry modes in crystals are waves

(¼,¼,0)

(½,½,0)

(½,0,0)
 

2 2 × 2 2

(½,0,0) Crystallographic irreps are 
defined in reciprocal space.  
Distinct 𝑘𝑘 vectors in the FBZ 
have distinct irreps.



Primitive Cubic Face-Centered Cubic

Primitive Tetragonal Face-Centered Ortho Rhombohedral

Body-Centered Cubic

k-point labels and irrep labels

A. P. Cracknell, B. L. Davies, S. C. Miller, and W. F. Love, Kronecker Product Tables, Vol. 1 (1979). 
Based on work by S. C. Miller and W. F. Love (1967). 



𝐿𝐿1+(a;b;c;d)
( 1/2, 1/2, 1/2)
( 1/2,-1/2,-1/2)
(-1/2, 1/2,-1/2)
(-1/2,-1/2, 1/2) 

Symmetry modes and diffraction patterns

𝑋𝑋1+(a;b;c)
(1,0,0)
(0,1,0)
(0,0,1)

1�10 fcc

220

002

222

The “star” of a k-vector includes all symmetry-related peaks that 
are not related to one another via a reciprocal-lattice vector.

Presenter Notes
Presentation Notes
Semicolons in the OPD separate contributions from different arms of the star of k.  Only the contribution from a given k-arm can affect the intensities of the corresponding superlattice peaks in the diffraction pattern.  In this example, there are four distinct k arms of the L(1/2,1/2,1/2) vertex of the first Brillouin zone, each of which has one parameter in the OPD.



𝑋𝑋1+ 𝑎𝑎, 𝑎𝑎, 𝑎𝑎
small cubic

25% Pt

𝐿𝐿1+ 𝑎𝑎, 0,0,0
small rhomb

50% Pt

𝑋𝑋1+ 𝑎𝑎, 0,0
common

not in CuPt

CuxPt3-x phase diagram

𝐿𝐿1+ 𝑎𝑎, 𝑎𝑎, 0,0
𝑋𝑋1+(𝑎𝑎′, 0,0)
big ortho

𝐿𝐿1+ 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎
𝑋𝑋1+ 𝑎𝑎′, 𝑎𝑎′, 𝑎𝑎′

big cubic 
𝐿𝐿1+ 𝑎𝑎, 𝑏𝑏, 𝑏𝑏, 𝑏𝑏
𝑋𝑋1+ 𝑎𝑎′, 𝑎𝑎′, 𝑎𝑎′  
big rhomb

Presenter Notes
Presentation Notes
Miida & Watanabe, J. Appl. Cryst. 7, 50-59 (1974).
L1+(a,a,0,0) is L13
L1+(a,0,0,0) is L11
X1+(a,a,a) is L12
X1+(a,0,0) is L10



𝑋𝑋1+ 𝑎𝑎, 𝑎𝑎, 𝑎𝑎
small cubic

25% Pt

𝐿𝐿1+ 𝑎𝑎, 0,0,0
small rhomb

50% Pt

𝑋𝑋1+ 𝑎𝑎, 0,0
common

not in CuPt

CuxPt3-x phase diagram

𝐿𝐿1+ 𝑎𝑎, 𝑎𝑎, 0,0
𝑋𝑋1+(𝑎𝑎′, 0,0)
big ortho

𝐿𝐿1+ 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎
𝑋𝑋1+ 𝑎𝑎′, 𝑎𝑎′, 𝑎𝑎′

big cubic 
𝐿𝐿1+ 𝑎𝑎, 𝑏𝑏, 𝑏𝑏, 𝑏𝑏
𝑋𝑋1+ 𝑎𝑎′, 𝑎𝑎′, 𝑎𝑎′  
big rhomb

Presenter Notes
Presentation Notes
Miida & Watanabe, J. Appl. Cryst. 7, 50-59 (1974).
L1+(a,a,0,0) is L13
L1+(a,0,0,0) is L11
X1+(a,a,a) is L12
X1+(a,0,0) is L10



The star of a 𝒌𝒌 vector is the set of all symmetry-related 𝒌𝒌 
vectors (relative to the reciprocal space group).  Normally, 
we just identify a generating set of representative 𝒌𝒌 vectors, 
which are not related to each other by lattice translations. 

Wavevector star

½ ½ 0  

1 
0 

0
 

0 0 1  

¼ ¾ 0  

−½ 0 0  
½, 0,0 , (−½, 0,0), (0, ½, 0), (0, −½, 0)

¼, ¾, 0 , −¼, ¾, 0 , ¼,−¾, 0 , −¼,− ¾, 0 ,
¾, ¼, 0 , −¾, ¼, 0 , ¾,−¼, 0 , −¾,−¼, 0  

½, ½, 0 , −½, ½, 0 , ½,−½, 0 , −½,−½, 0

0.3,0,0 , (−0.3,0,0), (0,0.3,0), (0, −0.3,0)

For each star, a set of representative 𝒌𝒌 vectors is colored red.

.3 0 0  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 example:



½ ½ 0  

1 0 0  

0 0 1  

Complete space-group irreps
at special-𝒌𝒌 points

Simultaneous action of entire k star.
8 cases worked manually (1968-1984).

Little-𝒌𝒌 group irreps
Faddeyev; Kovalev; Zak, Casher, 
Glück & Gur; Bradley, Cracknell, 
Davies, Miller, Love (1964-1979)

reciprocal space

Tables of Stokes & Hatch (1984, 1987):
all 4777 space groups irreps at special 𝒌𝒌; 
15239 isotropy subgroups [green book].

Complete space-group irreps 
at any commensurate 𝒌𝒌 point

Karep (1992), ISOTROPY (1995).
Requires real-time calculations.

¼ ¾ 0  

Complete space-group irreps
(any commensurate/incommensurate 𝒌𝒌)

ISO-IR, Stokes & Campbell (2014)
Tabulated – not real-time calculation!

.31 0 0  

Space-group irrep calculations

Presenter Notes
Presentation Notes
Irreps of little-k groups of all space-groups – fueled by Landau theory:  Faddeyev (1964), Kovalev (1965), Miller & Love (1967),  Zak, Casher, Glück & Gur (1969), Bradley & Cracknell (1972), Cracknell, Davies, Miller, Love (1979).

ISGs for 8 common space groups determined by 8 research teams in 16 papers (1968-1984)
See references in PRB 30, 4962 (1984)
M.V. Jaric and J. L. Birman
E. B. Vinberg, Y. M. Gufan, V. P. Sakhnenko, and Y. I. Sirotin
J. R. Zielinski, W. J. Cieslewicz, and W. Marzec
H.T. Stokes and D.M. Hatch
J. M. Perez-Mato, J. L. Manes, M. J. Tello, and F. J. Zuniga
M. Sutton and R. L. Armstrong
M. H. Ben Ghozlen and Y. Mlik
P. Toledano and J. C. Toledano

Systematic tabulation of all isotropy subgroups of 3D space groups at special k-points (4777 irreps, 15239 subgroups).  Complete irreps, not little-group irreps. (1984, 1987).

Complete tabulation of irreps of complete space groups and their superspace extensions for all commensurate and incommensurate k-stars.  Analogous to loaded irreps but simultaneously treating all arms of a k-star.  Stokes and Campbell (2014).
 




Irreps to (3+d)D superspace

 New irreps matrices for all space groups at commensurate k vectors.  
Similar to earlier matrices (𝑔𝑔′ = 𝐴𝐴𝐴𝐴𝐴𝐴−1 for 𝑔𝑔 ∈ 𝐺𝐺), modern form.

 Separated form makes tabulation possible for the first time!

 Irrep matrices tabulated for superspace extensions of all space groups 
for the first time.  Their isotropy subgroups are superspace groups.

Acta Cryst. A69, 75-90 (2013).



Selecting an isotropy subgroup
parent space-group symmetry

irrep
finite number for each k-point (e.g. X1

+, X3
+, Χ5

−)

order-parameter direction (OPD)
finite number for each IR; special points/lines/planes in abstract representations space

k-point
finite number of types (e.g. Γ, ∆, Χ), 

but ∞ number of points

isotropy subgroup
[1] space-group type (230) or magnetic space group type (1651)
[2] supercell basis (relative to parent)
[3] origin of supercell (relative to parent)

Presenter Notes
Presentation Notes
Infinite choice of k-points, finite number of irreps, finite number of OPDs.  Choosing k-points, irreps, and OPDs specifies an isotropy subgroup (ISG).  Multiple choices of k, irrep, and OPD can lead to the same ISG.  An ISG is uniquely determined by its space group (or SSG, MSG, MSSG) type, its relative basis, and its relative origin.  By relative basis, we mean the child basis relative to the parent basis.  By relative origin, we mean the origin of the child relative to the parent basis.



{(1,0,0),(0,1,0),(0,0,1)} 

P2

a
b

Distortion: (basis, SG-type)

{(2,0,0),(0,1,0),(0,0,1)} {(2,0,0),(0,2,0),(0,0,1)}

{(1,0,0),(0,2,0),(0,0,1)}

Presenter Notes
Presentation Notes
Here, three child subgroups have the same space-group type but different bases.  The resulting symmetry groups differ in the locations of their symmetry elements relative to the parent basis and origin.



P2

Two distinct cases with same basis = {(2,0,0),(0,2,0),(0,0,1)}

a
b

Distortion: (basis, origin, SG-type)

origin: (0,0,0) origin: (½,0,0)

Presenter Notes
Presentation Notes
Here, two child subgroups have the same space-group type and bases but have different relative origins.  The resulting symmetry groups differ in the locations of their symmetry elements relative to the parent basis and origin.



(a,a,0) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′(a,0,0)  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (a,a,a)  𝑅𝑅�3𝑚𝑚𝑚

(a,b,0)  𝑃𝑃𝑃𝑃/𝑚𝑚𝑚 (a,a,b)  𝐶𝐶𝐶𝐶/𝑚𝑚𝑚

(a,b,c)  𝑃𝑃�1

𝑃𝑃𝑃𝑃�3𝑚𝑚. 1′

Single-k irrep → many symmetry groups

m𝛤𝛤4+ irrep of has 6 OPDs.

kernel  

5 epikernels  



(a,a,0) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′(a,0,0)  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (a,a,a)  𝑅𝑅�3𝑚𝑚𝑚

(a,b,0)  𝑃𝑃𝑃𝑃/𝑚𝑚𝑚 (a,a,b)  𝐶𝐶𝐶𝐶/𝑚𝑚𝑚

(a,b,c)  𝑃𝑃�1

𝑃𝑃𝑃𝑃�3𝑚𝑚. 1′

Single-k irrep → many symmetry groups

m𝛤𝛤4+ irrep of has 6 OPDs.

kernel  

5 epikernels  



One symmetry group, many irreps

J.W. Bos and J.P. Attfield, J. Mater. Chem. 15, 715–720 (2005).

Strain
[0,0,0]Γ1+, Γ3+, Γ5+

Displacive & rotational
1/2, 1/2, 0 M3

+

1/2, 0, 0 X5+
1/4, 1/4, 1/4 R4

+

Site order (Co/Ru)
1/2, 1/2, 1/2 𝑅𝑅4+

Magnetic (Co)
1/4, 1/4, 1/4 𝑚𝑚Λ3

La2CoRuO6 (14.80 𝑃𝑃21/𝑐𝑐. 1𝑎𝑎′ )






 Symmetry modes can describe lattice strains, displacements, magnetic 
moments, occupancies, rigid-unit rotations, and thermal ellipsoids.

 Symmetry modes are classified by 𝒌𝒌 vector, irrep, and OPD.  They 
provide a complete and orthogonal basis for the space of all distortions.

 Symmetry-modes span the same configurational space as traditional 
coordinates if all relevant k-points, irreps, and OPD components are 
considered simultaneously.  Number of free variables is conserved!

 Symmetry modes are symmetry-adapted linear combinations of 
traditional parameters.  One mode can affect many symmetry-distinct 
atoms.  One atom can be affected by many modes. 

 The linear transformation between traditional and symmetry-mode 
coordinate is accomplished with a numeric invertible square matrix.

 Symmetry modes very often provide the most natural/efficient basis. 
Nature tends to activate as few symmetry modes as possible.  Even 
complicated magnetic structures are usually described by a single irrep!

Summary

Presenter Notes
Presentation Notes
Distortions increase the number of independent parameters (DOFs) required to describe the structure (sometimes dramatically). This complicates refinements, especially if the distortion is subtle.
Traditional crystallographic parameters are easy to communicate and interpret, but are not the most natural way to describe a distortion.  For example, they don’t separate DOFs of parent and distortion.
Symmetry-modes provide an equivalent structural parameter set that can be broken down and classified according to OP symmetry.
One mode affects many atoms.  One atom affected by many modes.
The traditional and symmetry-mode parameters are related by a simple linear transformation (coeff. derived from group theory).
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ISOTROPY software suite (iso.byu.edu)



• ISODISTORT: parent structure file is required; treats any combination of 
order parameter types (displacive, magnetic, occupational, rotational, 
strain); accepts any combination of irreps/OPDs at commensurate and 
incommensurate k vectors.

• ISOSUBGROUP: no structural input required; for any space group, find 
magnetic and non-magnetic subgroups involving order parameters at any 
combination of commensurate and incommensurate k vectors.

• FINDSYM: Detect and enforce symmetry of a structure model to within 
user-specified tolerances on commensurate or incommensurate displacive, 
magnetic, rotational, and occupational parameters, as well as strains; the 
symmetry group can be a SG, SSG, MSG, or MSSG.

• ISOCIF: Build/modify structure files using a symmetry group and 
traditional parameters; employ FINDSYM to detect pseudo-symmetry; 
reduce symmetry to P1, apply arbitrary setting transformation; drop 
modulations or magnetic moments.

ISOTROPY Software Suite
Tools for magnetic symmetry and magnetic structures



• ISO-MAG: First computer readable table of MSG operations and Wyckoff 
sites (BNS and OG settings).

• ISO-IR: The only tabulation of complete space-group irreps for all special 
and non-special k-vectors of all crystallographic space groups (2011).

• ISO(3+d)D: The only tabulation of all superspace groups and non-magnetic 
superspace groups and their operations, k vectors, and Wyckoff-site data.

• ISOSPACEGROUP: A tool for presenting the symmetry operations and 
Wyckoff positions of any SG, SSG, MSG, or MSSG in an arbitrary setting.

• FINDSSG: Identify an SSG or MSSG from a generating list of operations, 
together with the transformation to the standard group setting.

• TRANSFORMSSG: Tool for applying an arbitrary setting transforming to 
the operations and k vectors of an SSG or MSSG, starting from any setting.

ISOTROPY Software Suite
Tools for magnetic symmetry and magnetic structures



ISODISTORT

• Generate child-structure models from a high-symmetry parent using either 
traditional or symmetry-mode parameters.  

• Compare different child structures using common parent-centric parameter set.
• Export models for refinement, DFT analysis, and/or publication.



Method 1 (special): Filtered search of tabulated list of irreps/OPDs at 
special k points.

Method 2 (general): Arbitrary superposition of irreps/OPDs from 
multiple commensurate and incommensurate k stars.

Method 3 (supercell): Find all isotropy subgroups with a given 
point/space group and sublattice.

Method 4 (decomposition): Decompose a known child structure into 
symmetry modes of a known parent structure.  Requires a group-
subgroup relationship, with relative basis/origin.

The “search” for an isotropy subgroup
ISODISTORT has four search methods:



Symmetry-mode labels

parent 
spacegroup

spacegroup
irrep

point-group
irrep

mode
amplitude

k-point Wyckoff site

OPD OPD variable

B. J. Campbell, H. T. Stokes, D. M. Hatch, J. Appl. Cryst. 39 607-614 (2006)

𝑃𝑃𝑃𝑃�3𝑚𝑚 0, ½, 0 𝑚𝑚𝑋𝑋5− 0,0, 𝑎𝑎, 𝑎𝑎, 𝑏𝑏, −𝑏𝑏 Fe: 𝑎𝑎 𝑇𝑇1𝑢𝑢 𝑏𝑏 0.667



𝑚𝑚𝑗𝑗 = �
𝒌𝒌,𝜈𝜈

Ψ𝜈𝜈𝒌𝒌 𝑒𝑒−2𝜋𝜋𝜋𝜋 𝒌𝒌⋅(𝒕𝒕𝑗𝑗−𝒕𝒕0) + Ψ𝜈𝜈𝒌𝒌
∗ 𝑒𝑒−2𝜋𝜋𝜋𝜋 (−𝒌𝒌)⋅(𝒕𝒕𝑗𝑗−𝒕𝒕0)

 = �
𝒌𝒌,𝜈𝜈

2𝑅𝑅𝑅𝑅(Ψ𝜈𝜈𝒌𝒌) cos(2𝜋𝜋 𝒌𝒌 ⋅ (𝒕𝒕𝑗𝑗−𝒕𝒕0)) − 2𝐼𝐼𝐼𝐼(Ψ𝜈𝜈𝒌𝒌) sin(2𝜋𝜋 𝒌𝒌 ⋅ (𝒕𝒕𝑗𝑗−𝒕𝒕0))

 = �
𝒌𝒌,𝜈𝜈

 |Ψ𝜈𝜈𝒌𝒌| cos 2𝜋𝜋 𝒌𝒌 ⋅ (𝒕𝒕𝑗𝑗−𝒕𝒕0 + 𝜑𝜑𝜈𝜈𝒌𝒌)

Irrep basis function conventions

SARAh and Fullprof use complex irreps and basis vectors, taking 
real part at the end.  ISOTROPY uses physically-irreducible 
representations (pirreps), which have real matrices and basis vectors 
at every step.  The end result is the same.  ISOTROPY further uses 
𝑡𝑡0 = 0 (origin-referenced rather than atom-referenced) modulations.

“basis vectors” (Fullprof/SARAh)

“basis function”
(ISOTROPY terminology)

Presenter Notes
Presentation Notes
(a-ib) (C–iS) + (a+ib)(C+iS) = aC - ibC – iaS - bS   +   aC + ibC + iaS - bS = 2aC - 2bS = 2(aC-bS)




Hands-on tutorials

The ISOTROPY Software Suite is web-based software.  Our web servers have 
limited capacity for a large number of simultaneous calculations.  Please work 
together in teams of two people to reduce server load.  One team member opens 
the tutorial instructions, and one accesses the server.

During lunch, download tutorial materials from 
https://iso.byu.edu/iso/isodistorttutorials.php and
download/install the ISOVIZ/ISOVIZQ programs from iso.byu.edu.

Any internet browser should work.  I prefer Firefox because it gives the option to 
open isoviz files directly without a download step.

Work through the tutorial exercises at your own pace in any order you like.  
Inexperienced users may want to start with the first exercise.

https://iso.byu.edu/iso/isodistorttutorials.php


LaMnO3 (single k, 1D irrep, 𝚪𝚪 point)

MSG: 62.448 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
colinear AF, 𝑚𝑚 = 3.87 𝜇𝜇𝐵𝐵 

Parent: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑘𝑘 = 0,0,0 , IR/OPD = 𝑚𝑚Γ4+(𝑎𝑎)

basis = 
1 0 0
0 1 0
0 0 1

, origin = (0,0,0)

volume index: 𝑠𝑠 = 1
symmetry index: 𝑖𝑖 = 2 

Parent: 𝑃𝑃𝑃𝑃�3𝑚𝑚 (cubic perovskite)
𝑘𝑘 = ½, 0,0 , ½, ½, 0 , ½, ½, ½   
Magnetic Irrep/OPD: 𝑚𝑚X5+(𝑎𝑎,−𝑎𝑎; 0,0; 0,0)
Other displacive IRs: [½, ½, 0]𝑅𝑅4+(𝑎𝑎, −𝑎𝑎, 0), ½, ½, 0 𝑀𝑀2,3

+ (0; 𝑎𝑎; 0)

basis = 
1 1 0
−1 1 0
0 0 2

, origin = (0,0,0),  𝑠𝑠 = 4, 𝑖𝑖 = 48 

MAGNDATA 0.1



La2CuO4 (single k, 1D irrep)

MSG: 56.374 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 1𝐶𝐶′ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
colinear AF,  𝑚𝑚 = 0.17 𝜇𝜇𝐵𝐵 

Parent: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (#64)
𝑘𝑘 = 1,0,0  
IR/OPD = 𝑚𝑚𝑌𝑌4+(𝑎𝑎)

basis = 
2 0 0
0 1 0
0 0 1

, origin = (0,0,0)

volume index: 𝑠𝑠 = 2
symmetry index: 𝑖𝑖 = 4 

MAGNDATA 1.23



HoMnO3 (single k, 2D irrep) 

MSG: 31.129 𝑃𝑃𝑃𝑃𝑃𝑃21. 1𝑏𝑏′ [𝑃𝑃𝑃𝑃𝑃𝑃21] 
colinear AF,  𝑚𝑚 = 3.87 𝜇𝜇𝐵𝐵

Parent: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑘𝑘 = ½, 0,0  
IR/OPD = 𝑚𝑚𝑋𝑋1(𝑎𝑎, 𝑎𝑎)

basis = 
2 0 0
0 1 0
0 0 1

, origin = − 1
4

, 1
4

, 0

volume index: 𝑠𝑠 = 2
symmetry index: 𝑖𝑖 = 4 

MAGNDATA 1.20



Ba3Nb2NiO9 (single k, 4D irrep)

MSG: 159.64 𝑃𝑃𝑃𝑃𝑃𝑃. 1𝑐𝑐′ [𝑃𝑃𝑃𝑃𝑃𝑃]
AF,  𝑚𝑚 = 3.87 𝜇𝜇𝐵𝐵 

Parent: 𝑃𝑃�3𝑚𝑚𝑚 #164
Primary 𝑘𝑘 =(1/3, 1/3, 1/2) 
Primary IR/OPD:  𝑚𝑚𝐻𝐻3(𝑎𝑎,−𝑎𝑎/ 3, 𝑎𝑎/ 3, 𝑎𝑎)

basis = 
−1 2 0
−2 1 0
0 0 2

, origin = − 2
3

, − 4
3

, 0

volume index: 𝑠𝑠 = 6
symmetry index: 𝑖𝑖 = 12 

Secondary IR/OPD: k = 0,0,1/2 , 𝑚𝑚𝐴𝐴1(𝑎𝑎) -- not active.

MAGNDATA 1.13



Nd2CuO4 (multi k, (1+1)D irrep)

MSG: 134.481 𝑃𝑃42/𝑛𝑛𝑛𝑛𝑛𝑛. 1𝐶𝐶′ [𝑟𝑟𝑟𝑟42/𝑚𝑚𝑚𝑚𝑚𝑚]
AF,  𝑚𝑚 = 1.0 𝜇𝜇𝐵𝐵 

Parent: 𝐼𝐼𝐼/𝑚𝑚𝑚𝑚𝑚𝑚 (#139)
Multi-k structure
Primary 𝑘𝑘 = ½, ½, 0 , −½, ½, 0  
Primary IR/OPD = 𝑚𝑚𝑋𝑋4+(𝑎𝑎; 𝑎𝑎)

basis = 
1 1 0
−1 1 0
0 0 1

, origin = 0,0, −½

volume index: 𝑠𝑠 = 4
symmetry index: 𝑖𝑖 = 8

MAGNDATA 1.13



CE-type antiferromagnetic stucture

P.G. Radaelli et al., PRB 55, 3015-23 (1997); Q. Huang et al., PRB 61, 8895-8905 (2000).

La0.5Ca0.5MnO3 (Pnma at RT)

Mn(3+/4+) charge order and 
electronic phase separation

CE-AF/CO structure 

2 2 × 2 × 2 2 supercell

Six k stars (Γ, X, M, R, Σ, S) of 
cubic parent

48 params in P1, 9 in 𝑃𝑃
 
2/1𝑚𝑚. 1’𝑎𝑎 a

c
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