Incommensurate magnetic structures and
magnetic superspace groups (MSSGs)

Branton J. Campbell

Department of Physics & Astronomy
Brigham Young University

2024 International Workshop on Magnetic Crystallography (IWMC2024)
Organized by the Chinese Spallation Neutron Source

Dongguan International Exhibition Hotel, Dongguan City, Guangdong, China
24-30 November 2024



iBYUE Acknowledgements

Harold T. Stokes (Brigham Young University, USA)

Sander van Smaalen (U. Bayreuth, Germany)
Manuel Perez-Mato (U. Basque Country, Bilbao, Spain)
Vaclav Petticek (Institute of Physics CAS, Prague, Czech Republic)
Andrey Gubkin (Institute of Metal Physics, Yekaterinburg, Russia)

S. van Smaalen, Incommensurate Crystallography (2007), Oxford University Press.
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Incommensurate magnetic structures.

ISO-MAG (http://stokes.byu.edu/iso/magneticspacegroups.php)
ISO-(3+d)D (http://stokes.byu.edu/iso/ssg.php)

Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases
Perez-Mato et al., Journal of Physics: Condensed Matter 24 163201 (2012).
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Modulated magnetic structures

Incommensurate magnetic structures are relevant to a wide
range of materials phenomena, including skyrmions, topological
magnetic textures and excitations, multi-ferroics, and more.

There are already 160 incommensurate magnetic structures in
the MAGNDATA database of the Bilbao Crystallographic
Server (BCS). Each one possesses symmetries comprising a
magnetic superspace-group (MSSG).
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Presentation Notes
Image source: https://www.frm2.tum.de/en/frm2/news-single-view-en/article/discovery-of-a-new-magnetic-order-skyrmion-lattice-in-a-chiral-magnet/


odulation wavevector

A symmetry-breaking distortion can be decomposed into

commensurate and/or incommensurate modulation waves, each
with a characteristic wavevector: A(r) = 3, A, e knT+én),
position r and wavevector k should be interpreted here in
unitless lattice coordinates of the parent cell (pink square).
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incommensurate k = (0.1521,0,0)

Incommensurate means the
wavevector k has irrational
components.




ncommensurate satellites

The (3 +2)D structure of oxygen deficient LaSrCuO; s,
Haderman ef al., J. Mater. Chem., 2007, 17, 2344-2350
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Incommensurate modulations destroy
translational periodicity in 3D space.
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The curve drawn shows longitudinal displacement vs position.

Figure modified from Sander van Smaalen, pg 33, Incommensurate Crystallography (2007).



When we translate right by one lattice vector, the next
atom 1s in the wrong place -- not a symmetry operation.

Treat each atom in the 1D unit cell as a wave along a

new “phase’ dimension (a,, vertical axis) slide. When
translating to a new unit cell, slide the wave phase until

the atom is in the right place. The translation along the Py
sloped line (a,) is a new (1+1)D symmetry operation.

Translational periodicity (see the repeating unit) is
recovered by adding the phase-shift dimension.

In general, we get one extra phase dimension for
each of the d independent modulation waves. We
call the result (3 + d)-dimensional superspace.

Superspace (1D example)

Figure modified from Sander van Smaalen, pg 33, Incommensurate Crystallography (2007).
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Presentation Notes
This one-dimensional displacively-modulated crystal clearly lacks translational symmetry along the horizontal direction.  Moving the green atoms at the origin to the right by one lattice unit (which is from one vertical grey bar to the next) does not leave them looking the same as before.  Not a symmetry.
 
However, if we think of each atom, not as point, but as a wavy line whose phase evolves along an imaginary “internal” dimension (vertical in this illustration), simply shifting the phase of the wave up a bit predicts the correct atom position.  We can do the same for each of the atoms in the figure in a systematic way.  Remarkably, adding this “phase” dimension recovers translational symmetry.  See the new repeating unit in two dimensions.  In general, we get one extra phase dimension for each of “d” independent modulation waves, and call the result (3+d)-dimensional superspace.



Superspace description

Each atom in the unit cell has local properties such as position, magnetic moment,
occupancy, and ADPs. In a modulated structure, each atom also possess extended
incommensurate waves, each having a k vector, amplitude, and phase.

For a modulation with wavevector k, we let 4,, and ¢,, be the amplitude and
phase of the modulation of the n'" atom (at location ) in the first unit cell (at

the origin) and let t be a lattice translation. The modulation function at position
r,+t 1S Anei(k‘[rn+t]+¢n) — Anei(k‘rn‘l'(bn)eik't.

A wave belonging to one atom also belongs to all translationally equivalent atoms
in the crystal! We only define waves for atoms in the first unit cell (at the origin).

1.00  Master Slider
r Modes
M Sr_1 [0.33, 1.00, 0.00,0.00]
0.25 DT5[Srb:dsp]T1u(a)
Ti Modes
M Ti_1 [0.30, 1.00, 0.00, 0.00]
0.23  DTS[Tia:dsp]Tiu(a)
L 0.00 mDT5[Ti:a:mag]T1g(a)
0 Modes
M 0_1 [0.35,1.00, 0.00, 0.00] M O_2 [0.48, 1.00, 0.00, 0.00]
M 0_3 [0.30, 1.00, 0.00, 0.00]
—— 036  DTS[O:d:dsplA2ufa
y 026 DT5[01: u_1(a)
v 022 DTS[O:d:dsplEu_2(a)

Strai
Pcell 4.20 420 420 90.00 90.00 90.00
Scell 420 420 420 90.00 90.00 90.00
0.000 GM1+strain(a)

0.000 GM3+strain(a)
0.000 GM3+strain(b)




_’ Presentation of space-group operators
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The augmented-matrix form allows translations to be treated via matrix multiplication!
Important for theoretical/computational work. Example: space group P2,2121 (#19).



Space group elements permute the atoms of the structure and transform their local
properties. Superspace group elements do this too, but must also permute/transform
the incommensurate waves (k vectors, amplitudes, and phases) attached to those
atoms. Regular space group operations cannot permute/transform the waves.
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Presenter Notes
Presentation Notes
Symmetry operations can permute the propagation vectors of the star of 𝑘, and hence relate the complex amplitude vectors of the waves to one another.  They change both the direction and phase of such a complex amplitude vector.  This requires additional information in the operation matrices.



uperspace-group matrix operations

Ly N = :

Superspace position 3D atom position
¥
I, I L3+1
T = x; , wherez, = | 2o | and z; = : <€— atom phases

1 3 L34+d
R 0|w z, Rz, +v transformed atom coordinates
M €| T; = | Mz, +ex; +6 transformed modulation phases
0 0f1 1 1

External point operation R(3 X 3) and translation v(3 X 1)
transform atom coordinates, modulation amplitudes, and physical-
property tensor components in normal 3-dimensional space.

Internal point operation €(d X d) and translation 6(d X 1) act in
the d-dimensional phase space to transform the modulation phases.

In awkward superspace settings (with rational wave-vector
components), the external-space atom position influences the
transformation of phases through M (d X 3).



R 0w
M €|d
0 011

: Suﬁersﬁace-grouﬁ matrix oﬁeratlons

3D external-space position

d internal-space phases

Rz, +v

Mz, +ex; +96

P4,mc(a,0,%2)00q(0,a, ¥2)0sq
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A magnetic superspace-
group (MSSG) operation
also has a time-reversal
component (6 = £1).
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Example:105.2.65.9 diagonal-plane c glide.

The position of an atom in superspace includes both an external piece and an internal piece.  The external piece its is 3D position in the limit that the modulation amplitude goes to zero, while the internal piece holds the phases of each of its waves (all “d” of them).  Whereas a space-group operation has only a 3D point matrix R and a 3D translation vector v, a superspace operation includes a d-by-d point matrix epsilon, which permutes the wave vectors and their inverses, and an internal space translation or phase shift of each wave. The superspace operation transforms the external position of the atom with R and v in the usual way, and also transforms the modulation phases using M, epsilon, and delta.

The integer-matrix called “M” only arises when the wavevectors have rational components.  It causes the external atom position to influence the enacted phase shift.  It can be eliminated by choosing a “supercented” superspace-group setting – includes centering vectors that include non-zero internal-space components.

105.2.65.9
Non-lattice generators: (-y,x,z+1/2,z-u+1/4,t+1/4); (-x,y,z,z-t,u+1/2); (y,x,z+1/2,u+1/4,t+3/4) �Non-lattice operators: (x,y,z,t,u); (-x,-y,z,z-t+1/2,z-u+1/2); (-y,x,z+1/2,z-u+1/4,t+1/4); (y,-x,z+1/2,u+3/4,z-t+3/4); (-x,y,z,z-t,u+1/2); (x,-y,z,t+1/2,z-u); (-y,-x,z+1/2,z-u+3/4,z-t+1/4); (y,x,z+1/2,u+1/4,t+3/4)�*****



Each row of matrix o(d X 3) contains the components of a
3D wavevector, which may have irrational (¢') and rational
(o") parts. The rows of ¢' must be linearly independent!

[ r
klx klz ° g
g = : :
kKax = Kagz

R, €, and M contain only integers; these matrices are not independent.

0
M = oR —€d|= (c'R #ec') + (6"R — €a") R 0 v
M € o
= s'R=cc' and M =0"R—eo” 0 0 1

€ 1s determine by R and al, and M is determined by R,€,and o”.
When extending normal operation {R, v} to superspace, only 6 is
not fixed from the start.
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B  Use superspace centering to zero M

' (kN _(a O 1/2 . . :
Suppose 0 = (k2> = ( 0 o 1 /2). Due to the rational parts, a 90° rotation

around +z does not transform k4 and k, into linear combinations of one another.
M = oR — €0

0 -1 0
G 3 o6 D6 2

_ (O —a 1/2) B (O —a —1/2) _ (O 0 1)
“\a 0 1/2 a 0 1/2) \0 0 0
In other words, k, = k; and k; - —k, + (00 1).

We can make this weirdness go away by redefining the third superspace basis vector
: 11 :
as az = 2a; + a,. The new cell has a superspace centering vector (OO EE)’ which

nicely accounts for the evolution of the wave phase along the z direction. In this

g 2 8) and M = 0, so that the phase shifts enacted by the

four-fold rotation do not depend on atom position. This is a much better way to live!

new setting, 0 = (



| se superspace centering to zero

\.-r.
e
y. .
s

Pmna(01/2y)s00 - M = +(0 1 0) for some operations.
Atom located at x, = (0.25 0.321 0.25), so that Mx, + 0.

Standard setting

Employ a supercentered cell (a; = 2a, + a,) with centering translation (00 %%)

Supercentered setting

Symmetry restrictions
structure :

x[Fel]=0.25

g[Fel]=0.25
xcosl[Fel]=-1.5867*xs1nl [Fel]
yocosl[Fel]=0.63022%y=1inl [Fel]
zcosl[Fel]=-1.5867*z=s1nl[Fel]
xcos2 [Fel]=2.0%0%%x=s1n2 [Fel]
yocosZ [Fel]=-0.47826%y=1n2 [Fel]
zcos2 [Fel]=2.0%0%%z=s1n2 [Fel]
xcos3[Fel]=0.11677*x=1n3[Fel]
yocos3[Fel]=—-8.5642%y=1n3 [Fel]
zecos3 [Fel]=0.11677*z=1n3 [Fel]
xcosd [Fel]=—-1.2402%x=1n4 [Fel]
yocos4 [Fel]=0.80632%y=1n4 [Fel]
zeosd [Fel]=—-1.2402%z=21nd [Fel]

Symmetry restrictions
structure :

x[Fel]=0.25

z[Fel]=0.25

v2inl [Fel]=0
xcosl[Fel]=0
ecosl [Fel]=0
v=in2 [Fel]=0
xco=sl [Fel]=0
gcosZ [Fel]=0
v=in3 [Fel]=0
xcos3[Fel]=0
zcos3[Fel]=0
v=ind [Fel]=0
xcozsd [Fel]=0
rcosd [Fel]=0

Output from JANA 2006. Example from M. Henriques and V. Petricek




Magnetic group construct types

A magnetic group M can be constructed by adding time-reversal
(indicated as a prime') to operations of a related non-magnetic
point group, space group, or superspace group called F.

The construction can implemented in four different ways.
Type 1: M = F, no primed operations (colorless).
Type 2: M = F + F1', primed and unprimed copies of each operation (grey).

Type 3: M = D + (F — D)1’ for each equi-translation index-2 subgroup D of F
(bi-colored group with bi-colored MPG).

Type 4: M = D + (F — D)1’ for each equi-class index-2 subgroup D of F
(bi-colored group with grey MPG, contains anti-translations).

Each non-magnetic SSG (F) can give us many MSSGs (M)!


Presenter Notes
Presentation Notes
Because time-reversal is usually indicated with a prime symbol, I’ll use the expressions “primed” and “time-reversed” interchangeably.
There are four rather different ways to construct a magnetic group M by adding primes to the operations of a non-magnetic group F.  
First, we can choose not to prime any operations, so that M and F are essentially identical.  These are the so-called “colorless” magnetic space groups.
Second, can have both primed and unprimed copies of each operation from F.  These are the so-called “grey” magnetic space groups, which do not admit magnetic moments.
Next, one can choose an index-2 subgroup D of F, and prime the operations in the complement.  These are the so-called “bi-colored” magnetic space groups.
If F contains translations (as it will for space groups and superspace groups), we can further split the bi-colored class into two sub classes, type-3 and type-4, by choosing the subgroup D to either have the same translation subgroup or the same point group as F.  
In the latter type-4 case, half of the translations of F get primed, and are therefore no longer translations, but are instead called anti-translations.
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vG B "VISSGs constructed from SSG = 16.1.0.1

For each non-magnetic SSG, test every group-forming way to add
primes to the SSG generators, and isolate unique results as MSSGs.
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Presenter Notes
Presentation Notes
To generate all of the magnetic superspace groups based on a given non-magnetic SSG, we have to test every group-forming way to add primes to the SSG generators.  And then, to clean up any duplicates, we apply an equivalence test to isolate the unique MSSGs.

This fairly simple example shows all of the MSSGs based on nonmagnetic SSG P222(0,0,g)000.
See that there is only one way to prime nothing; that’s our type-1 MSSG in blue.
We can’t assign primes only to a single two-fold rotation because that wouldn’t form a group.
If we assign primes to all three 2-fold rotations, we effectively prime everything, including the identity; that’s our type-2 MSSG in green.  The identity is indicated here as a primed zero translation.
There are three ways to assign primes to exactly two of the rotations, though two of them are equivalent, so that there are only two type-3 MSSGs in red. Omitting the prime on the first rotation is equivalent to omitting the prime on the second rotation; these groups a related by a 90 rotation around the third axis.  The third two-fold rotation is different from the others in being parallel to the modulation direction.
Each type-4 MSSG must prime half of the lattice translations of F.  The different ways of doing this can be distinguished by showing an anti-translation from the first superspace cell. The first one in black is a primed phase shift; only the internal-space component is non-zero.  This means that shifting the phase of the wave by half a period, and then flipping the whole wave with a time reversal, brings the wave back to its original form.  It’s a symmetry.
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Using this approach, we enumerated and tabulated the non-magnetic superspace group with d=1, 2, and 3 internal-space dimensions.  The 775 single-modulation SSGs were already known at the time.  But the results were novel for higher dimensions.  We then uniquely identified all of the superspace-group symmetries of every known structure with more than one modulation vector.
straightforward.
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A magnetic superspace group (MSSG) simultaneously constrains both the
magnetic and non-magnetic (e.g. displacive, occupational, rotation and strain)


Presenter Notes
Presentation Notes

Most recently, we have expanded this effort to include magnetic superspace groups.  The equivalence test was trivial to extend; we merely added the requirement that the time-reversal components of corresponding elements match up.


UR ™ MSSG enumeration/tabulation

MPG |MSG (d=0)|MSSG (d=1)| MSSG (d=2) | MSSG (d=3)
Type 1 | 32 230 775 3338 12584
Type2 | 32 230 775 3338 12584
Type3 | 58 674 3100 15218 60799
Type d | - 517 4653 31862 176101
Total | 122 1651 9303 53756 262068

Why bother when there are so many? After detecting the MSSG elements of an
incommensurate structure (already a challenge) in an arbitrary setting, it’s very
difficult to subsequently compare i1ts symmetry to that of other known structures.
One would need to run an equivalence test on every structure of interest, which i1s
not practical. With an exhaustive table, we need only compare to reference setting
of each tabulated MSSG with similar properties (e.g. Bravais class, MBSG).



MSSG symbols and numbers

A S 1/2
Magnetic basic space propagation vectors t,f +1/3
group (MBSQG) (in standard setting) q,q =*1/4
\\ 4 \ h,h +1/6
(P45mc'[a, 0,%:)00q(0, a, ¥2)0sq] I ‘ ’
B O ¥ & components (phase shifts) for K 1“ 1
(M € )(— each k and each PG generator in
0 0 1 the supercentered setting § R ;

Bravais class = 2.65 P4/mmm(a,0,%2)0000(0, a, 2)0000

FSSG = #105.2.659 P4,mc(a,0,%)00q(0,a, ¥2)0sq

MBSG = #105.214 P4, mc’

MSSG = #105.2.65.9.m214.1 P4,mc'(a,0,%)00q(0, a, ¥.)0sq
15t and only MSSG with this FSSG and MBSG


Presenter Notes
Presentation Notes
The form of our MSSG symbols were inspired by published examples from Manuel Perez-Mato and Vaclav Petricek.  They are only a slight modification of the non-magnetic SSG symbols.  The wave vectors and the internal-space phase shifts of the group generators are still present, just as before.  But for an MSSG, the basic space group at the front is replaced by the magnetic basic space group, as shown here.

An MSSG number has six different parts.  The first four parts specify the non-magnetic family SSG from which the MSSG was constructed.  This example is the 9th SSG with basic space group #105 or P4_2mc, and Bravais class #2.65.  The m214 clarifies that the basic magnetic space group is #105.214, or P4_2’mc’.  And the very important sixth component distinguishes MSSGs with the same values of the first five parts.  There is only one such MSSG in this example, so that the last part can only be 1.

***** Other
Magnetic superspace group: 105.2.65.9.m214.1  P4_2'mc'(a,0,1/2)00q(0,a,1/2)0sq�Non-lattice generations: (-y,x,z+1/2,z-u+1/4,t+1/4)'; (-x,y,z,z-t,u+1/2); (y,x,z+1/2,u+1/4,t+3/4)' �Non-lattice operations: (x,y,z,t,u); (-x,-y,z,z-t+1/2,z-u+1/2); (-y,x,z+1/2,z-u+1/4,t+1/4)'; (y,-x,z+1/2,u+3/4,z-t+3/4)'; (-x,y,z,z-t,u+1/2); (x,-y,z,t+1/2,z-u); (-y,-x,z+1/2,z-u+3/4,z-t+1/4)'; (y,x,z+1/2,u+1/4,t+3/4)'�*****
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TbMnO;, (#1.1.7) Pbn2,.1'(080)000s 33.1.9.5.m145.2

x1,x2,x3,x4,+1
-x1,-x2,x3+1/2,-x4,+1

x1+1/2,-x2+1/2,x3+1/2,-x4,+1
-x1+1/2,x2+1/2,x3,x4,+1

5 |x1,x2,x3,x4+1/2,-1
6 -x1,-x2,x3+1/2,-x4+1/2,-1

7 x1+1/2,-x2+1/2,x3+1/2,-x4+1/2,-1
8 -x1+1/2,x2+1/2,x3,x4+1/2,-1

Type-4 MSSG with anti-
translation (0,0,0, %2)’

AVAVAVAVAVAVAVAYA!



Presenter Notes
Presentation Notes
Here’s the Bilbao Crystallographic Server visualization of terbium manganite.  Below 28 K, two incommensurate magnetic waves with the same k vector, one transverse and one longitudinal, superpose 90 degrees out of phase to form a cycloid structure. Its related properties generated quite a controversy 10 to 15 years ago because the symmetry wasn’t properly understood.  Crystallographic infrastructure that support magnetic superspace groups is really quite new.  It is now clear that the two waves, when acting together, break inversion symmetry and couple to a secondary ferroelectric moment. The resulting magnetic superspace group, shown here, has a grey basic magnetic space group, which forbids a ferromagnetic moment, but has a polar basic space group, which does admit a ferroelectric moment. TbMnO3 is one example of what has since become an important class of multiferroic materials. 

***** Other
PRL95.087206 can be described by coupling commensurate mSM2 and mSM3 at [0,1/4,0].

At low temperatures, the incommensurate magnetic distortions occur at the [0,beta,0] or sigma point of space group Pbnm, which is also a cubic 110 direction.  The wave vector points along the axis of rotation associated with the cubic R4+ octahedral rotations in the distorted cubic perovskite.  The ferroelectric irreps of Pbnm are GM2- (x axis), GM3- (y axis) and GM4- (z axis), each of which have a single (a) OPD. 

In the LTI phase below 28K (actually at 15 K), however, the best fit to the magnetic neutron diffraction data was provided by coupling mSM2 and mSM3.  The contribution of mSM3 was just as before except that the mSM3[Mn:b]Ag_1 mode amplitude got significantly larger.  The contribution of SM2 included a significant Mn z-axis (i.e. mSM2[Mn:b]Ag_2) amplitude and a significant x-axis Tb amplitude (mSM2[Tb:c]A''_3 and mSM2[Tb:c]A''_4). 


http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.7

TbMnO;, (#1.1.7) Pbn2,.1'(080)000s 33.1.9.5.m145.2

1 x1,x2,x3,x4,+1 5 |x1,x2,x3,x4+1/2,-1

2 -x1,-x2,x3+1/2,-x4,+1 6 -x1,-x2,x3+1/2,-x4+41/2,-1

3 x1+1/2,-x2+1/2,x3+1/2,-x4,+1 7 x1+1/2,-x2+1/2,%x3+1/2,-x4+1/2,-1
4 -x1+1/2,x2+1/2,%x3,x4,+1 8 -x1+1/2,x2+1/2,x3,x4+1/2,-1

Mn Mx 0.00000 0.00000 Mxcl Mxsl . .
Mn My 0.00000 -2.82843 Mycl Mysl Type-4 MSSG with anti-
Mn Mz -2.82843 0.00000 Mzcl Mzsl translation (0,0,0, %2)’

No MSSG symmetry constraints on the
modulation amplitudes, which are instead /\/\/\/\/\/\/\/\/\/
associated with relevant multi-dimensional

irreps/OPDs: mX3(a, 0) + mZ, (b, 0).


http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.7

()
TbMnO, (#1.1.7) Pbn2,.1'(080)000s 33.1.9.5.m145.2

Transverse and longitudinal modulations are superposed 90° out of
phase, forming an incommensurate single-k magnetic cycloid.

Acting together, these two magnetic modulations break inversion
symmetry and couple to a secondary ferroelectric moment, making
the material an important multiferroic.


http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=1.1.7




BYUR Magnetic skyrmion lattice

Skyrmion lattice. Three phase-locked transverse waves in the plane yield an
incommensurate 2D lattice of magnetic vortices on a triangular arrangement of
magnetic atom. Their topological stability makes skyrmions interesting for
information storage, magneto-electronic devices, and quantum computing.


Presenter Notes
Presentation Notes
Three transverse magnetic waves, separated by 120 degrees in the plane, but all having the same phase, yield a incommensurate 2D lattice of magnetic whirlpools on a triangular arrangement of magnetic atoms.  We call these magnetic “skyrmions” and refer to this pattern as a skyrmion lattice.  Their topological stability make skyrmions interesting for information storage, magneto-electronic devices, and quantum computing.

Because the three wavevectors add to zero, one depends on the other two, two leaving only independent wavevectors and superspace dimensions. k1 and k2 are shown here in the MSSG symbol.  The basic magnetic space group of the skyrmion lattice, indicated here at P62’2’, can admit a secondary ferromagnetic moment normal to the plane, as evidenced by the background of mostly-upward spins (indicated in yellow in the figure).  Due to the MSSG symmetry, this entire spin pattern has only two adjustable degrees of freedom (not including the modulation period), both of which are set by the size of the atomic magnetic moment.

mLD3 + mLD4 + secondary ferromagnetic mGM2+�P-P (a,0;a,0;a,0|b,0;b,0;b,0) 177.2.83.6.m153.1 P62'2'(a,a,0)000(-2a,a,0)000
s=1, i=4, k-active= (q,q,0),(-q,2q,0),(-2q,q,0)

mLD3�P (a,0;a,0;a,0) 191.2.83.7.m235.1 P6/m'mm(a,a,0)0000(-2a,a,0)0000
s=1, i=2, k-active= (q,q,0),(-q,2q,0),(-2q,q,0)
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2D skyrmion lattice
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(3+2)D type-3 MSSG.

0)000(—2a, a,0)000
Representative non-lattice operations:
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CeAlGe (#2.1.1)
14,md.1'(a,0,0)000s(0, @, 0)0s0s

Two orthogonal incommensurate cycloids

from same k-star superpose to yield an
unusual topological spin texture.

{ Other interesting multi-k cases

MnGe (#3.1.1)

P2,3.1'(«,0,0)00s(0, ,0)00s(0,0, 2)00s
Three orthogonal incommensurate
modulation from same k-star superpose to
yield a fully 3D topological spin texture.


http://webbdcrista1.ehu.es/magndata/index_incomm.php?index=2.1.1
https://www.cryst.ehu.es/magndata/index.php?this_label=3.1.1







* Incommensurate modulations break 3D translational periodicity; internal
superspace (phase) dimensions restore periodicity, but in 3+d dimensions.

* One superspace dimension independent for k vector (irrational part).
* Every active k vector i1s an integer linear combination of the independent ones.
* Modulations can be magnetic, displacive, occupational, or rotational.

* Superspace symmetry operations must transform both the local atom properties
(position, occupancy, ADPs) and their waves (k-vector, vector amplitude, phase).

* MSSGs are constructed from SSGs by adding time reversal to some operations.
The four basic constructs are like those of commensurate MSGs. Most structures
with type-4 MSSGs have an internal-space anti-translation, e.g. (000%2)’.

* There are so many (3+d)D MSSGs; always provide reference transformation!
* Magnetic modulations impact material properties.

* Multi-k structures from a single k-star have especially interesting spin textures.



Tools available

* ISOSPACEGROUP and ISO(3+D) list generators, centering vectors, and
non-lattice operations for each of 325,127 MSSGs in a standard reference
setting, along with those of a supercentered setting where appropriate.
Released for testing in May 2019 and corrected/updated June 2020
(https://iso.byu.edu).

* Since Jul 2020, FINDSYM and ISOCIF can detect and enforce the
SSG/MSSG symmetry (or pseudosymmetry within tolerance) of an
incommensurate structure, and ISOCIF can transforms the symmetrized
result into any desired SSG/MSSG setting.

* ISODISTORT finds incommensurate isotropy subgroups, uniquely identifies
the SSG/MSSG and the transformation to a reference setting, projects the
modulation waves, and symmetry-restricts the modulation amplitudes.

* The reliable identification and comparison of virtually any two
incommensurate magnetic structures is accomplished by combining an
exhaustive MSSG tabulation, a MSSG setting-transformation tool, a robust
MSSG detection routine, and a very fast MSSG equivalence test.


Presenter Notes
Presentation Notes
Read the slide.

https://iso.byu.edu/
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